Exemple #1
0
    def _process_file(self, input_path, output_path, models):
        input_name = os.path.basename(input_path)
        print("Processing", input_name)

        # read input
        input_image = cv2.imread(input_path, cv2.IMREAD_UNCHANGED)
        if input_image is None:
            print("Unsupported image format:", input_path)
            return

        # start with an unmodified image
        output_image = input_image

        # apply all models from the list
        for model in models:
            print("Applying model '%s'" % model.name())
            upscaler = upscale.RRDBNetUpscaler(model, self.torch)
            output_image = self._process_image(output_image, upscaler)

        # write output
        cv2.imwrite(output_path, output_image)
Exemple #2
0
def fa():
    page = int(request.args.get('page'))
    limit = int(request.args.get('limit'))
    if request.args.get('id'):  # 判断是否有用搜所框查找
        data = request.args.get('id')
        try:
            data = int(data)  #  判断是按学号查找还是姓名查找
            bb = {"code": 0, "msg": "", "count": 1000, "data": xuehao(data)}
            bb = json.dumps(bb)
            return bb
        except ValueError:
            bb = {"code": 0, "msg": "", "count": 1000, "data": name(data)}
            bb = json.dumps(bb)
            return bb
    else:
        bb = {
            "code": 0,
            "msg": "",
            "count": 1000,
            "data": qwe()[(page - 1) * limit:page * limit]
        }
        bb = json.dumps(bb)
        return bb
Exemple #3
0
    def main(self):
        parser = argparse.ArgumentParser(description="ESRGAN image upscaler")

        parser.add_argument("input", help="Path to input folder")
        parser.add_argument("output", help="Path to output folder")

        parser.add_argument(
            "--model",
            action="append",
            required=True,
            help="path to upscaling model file (can be used repeatedly)")
        parser.add_argument(
            "--device",
            default=self.device,
            help="select Torch device (typically 'cpu' or 'cuda')")
        parser.add_argument(
            "--prefilter",
            action="append",
            metavar="FILE",
            help=
            "path to model file applied before upscaling (can be used repeatedly)"
        )
        parser.add_argument(
            "--postfilter",
            action="append",
            metavar="FILE",
            help=
            "path to model file applied after upscaling (can be used repeatedly)"
        )
        parser.add_argument(
            "--tilesize",
            type=int,
            metavar="N",
            default=self.tile_size,
            help="width/height of tiles in pixels (0 = don't use tiles)")
        parser.add_argument(
            "--perchannel",
            action="store_true",
            help="process each channel individually as grayscale image")
        parser.add_argument(
            "--noalpha",
            action="store_true",
            help="ignore alpha channels from input and output RGB only")

        args = parser.parse_args()

        self.device = args.device
        self.torch = torch.device(self.device)
        self.tile_size = args.tilesize
        self.per_channel = args.perchannel
        self.no_alpha = args.noalpha

        self.models_upscale = self._parse_model(args.model)
        self.models_prefilter = self._parse_model(args.prefilter)
        self.models_postfilter = self._parse_model(args.postfilter)

        if not any((self.models_upscale, self.models_prefilter,
                    self.models_postfilter)):
            print("No models selected or found!")
            return 1

        for model_upscale in self.models_upscale:
            models = self.models_prefilter + [model_upscale
                                              ] + self.models_postfilter
            model_name = "_".join([model.name() for model in models])

            print("Model pass '%s'" % model_name)

            output_dir = os.path.join(args.output, model_name)
            os.makedirs(output_dir, exist_ok=True)

            if os.path.isdir(args.input):
                for dirpath, _, filenames in os.walk(args.input):
                    for filename in filenames:
                        input_path = os.path.join(dirpath, filename)

                        input_path_rel = os.path.relpath(
                            input_path, args.input)
                        output_path_rel = os.path.splitext(
                            input_path_rel)[0] + ".png"
                        output_path = os.path.join(output_dir, output_path_rel)
                        os.makedirs(os.path.dirname(output_path),
                                    exist_ok=True)
                        self._process_file(input_path, output_path, models)

            else:
                for input_path in glob.glob(args.input):
                    if os.path.isdir(input_path):
                        continue

                    input_name = os.path.basename(input_path)
                    output_name = os.path.splitext(input_name)[0] + ".png"
                    output_path = os.path.join(output_dir, output_name)
                    self._process_file(input_path, output_path, models)