Exemple #1
0
def inference():
    if request.method == 'POST':
        sex = request.form['sex']
        smoker =request.form['smoker']
        bmi = request.form['bmi']
        region = request.form['region']
        age=request.form['age']
        children = request.form['kid']

        if not sex:
            flash('enter sex male or female')
        else:
            expense = read(sex,smoker,region,age, bmi,children)
            #Gcloud
            config ={
            'user': '******',
            'password': '******',
            'host': '34.121.155.244',
            'database':'insurancedb',
            'client_flags': [ClientFlag.SSL],
            'ssl_ca': 'ssl/server-ca.pem',
            'ssl_cert': 'ssl/client-cert.pem',
            'ssl_key': 'ssl/client-key.pem'
            }
        # now we establish our connection
            with sql.connect(**config) as cnx:
                        cur = cnx.cursor() # initialize connection cursor

                        cur.execute("insert into data(sex,smoker,region,age,bmi,children,insurance) VALUES (%s,%s,%s,%s,%s,%s,%s)",(sex,smoker,region,age,bmi,children,expense))

                        cnx.commit()
                        cnx.close()
            return render_template('inference.html',expense = expense)
    return render_template('inference.html')
Exemple #2
0
 def predict(*args):
     try:
         clients_data = model.read(self.filename.get())
     except:
         tkMessageBox.showinfo(
             "Error", "Select a weather forecast from the browser")
     regr = model.load_regressor(self.picked_regressor.get())
     try:
         clients_Y = model.predict(clients_data, regr)
         model.save_in_file(clients_Y)
         model.show_plots(np.arange(24), clients_Y)
     except ValueError:
         tkMessageBox.showinfo("Error",
                               "Select a valid weather forecast")
Exemple #3
0
def inference():
    if request.method == 'POST':
        sex = request.form['sex']
        smoker = request.form['smoker']
        bmi = request.form['bmi']
        region = request.form['region']
        age = request.form['age']
        children = request.form['kid']

        if not sex:
            flash('enter sex male or female')
        else:
            expense = read(sex, smoker, region, age, bmi, children)
            return render_template('/inference.html', expense=expense)
    return render_template('/inference.html')
def accuracy_of_model(n):
    sample_data = pd.read_csv('data/insurance.csv')
    sum = 0

    #print(sample_data)

    for i in sample_data.head(n).itertuples():
        sex = i[2]
        smoker = i[5]
        location = i[6]
        age = i[1]
        bmi = i[3]
        kids = i[4]
        expenses = float(i[7])
        #print(sex, smoker, location, age, bmi, kids)
        predicted = float(read(sex, smoker, location, age, bmi, kids))
        accuracy = abs(predicted - expenses) / expenses
        sum += accuracy
        print(accuracy)
        #print(predicted)
    avg_accuracy = 100 - (sum / n)
    print(avg_accuracy)
    return avg_accuracy
#cut data from images
# cut1 = observation.Datacut(img1, 500, 500)
# cut2 = observation.Datacut(img2, 300, 300)
# cut3 = observation.Datacut(img3, 400, 400)
cut1 = observation.Datacut(img1, 660, 760)
cut2 = observation.Datacut(img1, 660, 1040)
cut3 = observation.Datacut(img1, 660, 1200)
	

#create list of datacuts
#NOTE: at present, 
datacuts = [cut1, cut2, cut3]

#load initial atmospheric model
init_model = model.read('init_model.dat')

#check validity of initial atmosphere model
init_model.check_validity()

#write out model to a text file that is input to the fortran
#adding/doubling code
init_model.write_ft_input()
#
#Note: can also do init_model.write_ft_input(filename='workmodl000')

#write out illumination geometry data for observation into 
#format that can be read by fortran code
interface.write_geom_model(datacuts, filename = 'geom.dat')
#note: "geom.dat" is not very descriptive, but this is the default 
#string that the fortran code automatically uses. Not sure how to 
Exemple #6
0
        template()
        option = cnt.choise()
        if option not in ['c', 'r', 'u', 'd', 'e']:
            print("Opção Inválida!!!")

        #Create ----------------------------------------------------------
        if option == "c":
            status = db.create()
            if status == True:
                print("Deu certo...")
            else:
                print("Deu Ruim...")

        #Read ------------------------------------------------------------
        if option == "r":
            rows = db.read()
            print(
                "--------------------------------------------------------------------------------------------"
            )
            for row in range(len(rows)):
                print("Serviço: {}  | Usuário: {}  | Senha: {}  | ID: {}  ".
                      format(rows[row][1], rows[row][2], rows[row][3],
                             rows[row][0]))
                print(
                    "--------------------------------------------------------------------------------------------"
                )

        #Update ------------------------------------------------------------
        if option == "u":
            db.update()
Exemple #7
0
 def get(self, name):
     phone = model.read(name)
     if phone is None:
         return '', 404
     return phone[0]
Exemple #8
0
def combine_path_read(model, path_pre, path_name, path_postfix):
    path = join_path(path_pre, path_name, path_postfix)
    lines = model.read(path)
    return lines
def check_login(email):
    table_title = 'pkp_companies'
    list = ['email']
    values = [email]
    result = read(table_title, list, values)
    return result
# cut2 = observation.Datacut(img2, 300, 300)
# cut3 = observation.Datacut(img3, 400, 400)

#NOTE: remember that this accepts coordinates in Python, which is row-major
#whereas IDL is column-major.
cut1 = observation.Datacut(img1, 660, 1000)
cut2 = observation.Datacut(img1, 660, 1440)
cut3 = observation.Datacut(img1, 660, 1600)
	

#create list of datacuts
#NOTE: at present, 
datacuts = [cut1, cut2, cut3]

#load initial atmospheric model
init_model = model.read('test_model.dat')

#check validity of initial atmosphere model
init_model.check_validity()

#write out model to a text file that is input to the fortran
#adding/doubling code
init_model.write_ft_input()
#
#Note: can also do init_model.write_ft_input(filename='workmodl000')

#write out illumination geometry data for observation into 
#format that can be read by fortran code
interface.write_geom_model(datacuts, filename = 'geom.dat')
#note: "geom.dat" is not very descriptive, but this is the default 
#string that the fortran code automatically uses. Not sure how to 
Exemple #11
0
#cut data from images
# cut1 = observation.Datacut(img1, 500, 500)
# cut2 = observation.Datacut(img2, 300, 300)
# cut3 = observation.Datacut(img3, 400, 400)
cut1 = observation.Datacut(img1, 600, 600)
cut2 = observation.Datacut(img1, 700, 700)
cut3 = observation.Datacut(img1, 500, 500)

#create list of datacuts
#Note: at present, datacuts must have at least 3 cuts or else
#fortran code will reject the geom.dat file
datacuts = [cut1, cut2, cut3]

#load initial atmospheric model
init_model = model.read('imodel000.dat')

#check validity of initial atmosphere model
init_model.check_validity()

#write out model to a text file that is input to the fortran
#adding/doubling code
init_model.write_ft_input()
#
#Note: can also do init_model.write_ft_input(filename='workmodl000')

#write out illumination geometry data for observation into 
#format that can be read by fortran code
interface.write_geom_model(datacuts, filename = 'geom.dat')
#note: "geom.dat" is not very descriptive, but this is the default 
#string that the fortran code automatically uses. Not sure how to