Exemple #1
0
def load_model_data(pickle_filepath):
    '''loads data'''

    data = pd.read_pickle(pickle_filepath)

    train_df, test_df = data_for_model(data, odds=False)
    X_train, y_train, X_test, y_test = set_up_data(train_df, test_df)

    X_train = X_train.astype(theano.config.floatX)
    X_test = X_test.astype(theano.config.floatX)
    y_train_ohe = np_utils.to_categorical(y_train) # all ready OHE
    # pdb.set_trace()
    return X_train, y_train, X_test, y_test #, y_train_ohe
Exemple #2
0
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.metrics import f1_score, accuracy_score
import seaborn as sns
import pickle
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import GradientBoostingClassifier

from model import games_up_to_2018_season_filter, season2018_filter, data_for_model, set_up_data
'''Read in model data.'''
data_df = pd.read_pickle('model_data/gamelog_5_exp_clust.pkl')
train_df, test_df = data_for_model(data_df, odds=False)
X_train, y_train, X_test, y_test = set_up_data(train_df, test_df)
data = (X_train, y_train, X_test, y_test)

gb_model = GradientBoostingClassifier(learning_rate=0.1,
                                      loss='exponential',
                                      max_depth=2,
                                      max_features=None,
                                      min_samples_leaf=2,
                                      min_samples_split=2,
                                      n_estimators=100,
                                      subsample=0.5)

gb_model.fit(X_train, y_train)

feat_imports = gb_model.feature_importances_

features = train_df.columns.tolist()[1:]