def classify(data): if not os.path.isfile('model.joblib'): model.trainModel() clf = load('model.joblib') # stores output for file output = [] ## goes through and gets the entities and size ## needed for the prediction for i in range(len(data)): entities = [] total_length = [] predict_array = [] ## creates array of predictions for each sentence ## in a topic in each paragraph for j in range(len(data[i])): doc = nlp(data[i][j]) entities.append((len(doc.ents))) total_length.append((len(data[i][j]))) predictions = list(zip(total_length, entities)) predict_array = clf.predict(predictions) output.append("-" + data[i][0]) output.append("\n") ## goes through and indents how the sentences are ## based on the calculated prediction for y in range(1, len(predict_array)): if (predict_array[y] == 1 and y != 0): output.append("\t" + "\t" + "-" + data[i][y]) output.append("\n") elif (predict_array[y] == 0 and y != 1): output.append("\t" + "-" + data[i][y]) output.append("\n") output.append("\n") # returns output for file return output
map_location=lambda storage, loc: storage) model = getattr(m, args.modelName)(model_paras, emb) model.load_state_dict(model0.state_dict()) print(model) opt = optim.Adam(model.params, lr=args.lr) train_paras = { 'n_iter': args.n_iter, 'log_interval': [args.logInterval, 1000], 'flg_cuda': args.flg_cuda, 'lr_decay': [ args.lr, args.lr_decay_rate, args.lr_decay3, 1e-5, args.lr_decay_type ], 'flgSave': args.flgSave, 'savePath': args.savePath, 'n_batch': args.n_batch } m = m.trainModel(train_paras, None, test_loader, model, opt) m._test(0) m._savePrediction()
print("Loading model") if flg_cuda: model0 = torch.load(args.modelPath + '_model.pt') else: model0 = torch.load(args.modelPath + '_model.pt', map_location=lambda storage, loc: storage) if args.modelName == 'AttRNNseq2seq': model.load_state_dict(model0) else: model.load_state_dict(model0.state_dict()) print(model) if flg_cuda: model = model.cuda() opt = optim.Adam(model.params, lr=args.lr) train_paras = { 'n_iter': args.n_iter, 'log_interval': [args.logInterval, 1000], 'lr_decay': [args.lr, args.lr_decay_rate, args.lr_decay3, 1e-5], 'n_batch': args.n_batch, 'randSeed': args.randSeed } m = m.trainModel(train_paras, None, test_loader, model, opt, dict_target['id2token']) m._test(0)
from sklearn import preprocessing import matplotlib.pyplot as plt import matplotlib.image as matimage import matplotlib.cm as cm import cv2 from string import ascii_lowercase, ascii_uppercase import pprint import heapq import json from flask import send_file import time app = Flask(__name__) cors = CORS(app) app.config['CORS_HEADERS'] = 'Content-Type' model = trainModel() @app.route("/") @cross_origin() def helloWorld(): return "Works!!" @app.route("/predict", methods=['POST']) @cross_origin() def predict(): image, filename = createBinaryMatrix(request.json['points'], request.json['width'], request.json['height']) #image = normalize(image)
from config import img_height, img_width from audioToSpecgram import createSpecgramFromAudio, createSlicesFromSpecgram from util import createDatasetFromSlices from model import trainModel parser = argparse.ArgumentParser() parser.add_argument( "mode", help="Create Dataset - create, Train CNN - train, Test CNN - test", nargs="+", choices=["create", "train", "test"]) args = parser.parse_args() print("CNN Config") print("Validation Ratio : {0}".format(validation_ratio)) print("Test Ratio : {0}".format(test_ratio)) print("Specgram Time : {0}".format(spec_time)) print("Slices Per Genre : {0}".format(per_genre)) if "create" in args.mode: createDatasetFromSlices() if "train" in args.mode: trainModel() if "test" in args.mode: trainModel()
# If user wants to train the model if (trainingBool == 1): print("Training model on train MFCCs...") nEpochs = 10 # load mfcc correctly model = generateModel() tf.keras.utils.plot_model(model, to_file='model.png', show_shapes=True) model.compile(loss='binary_crossentropy', optimizer=keras.optimizers.Adam(lr=0.0001), metrics=['accuracy']) trainModel(nEpochs, gameNames, model) if (trainingBool == 0): print("Loading pre-existing model...") model = generateModel() model.load_weights('model_weights.h5') if (SHOW_ARCH == 1): keras2ascii(model) # PREDICTION # if (audioTestFile): X_test = generatePrediction(audioTestFile) print('retrieved %s test MFCCs' % (X_test.shape[0])) # Prediction using trained model