def main(paras): logger = logging.getLogger(__name__) if paras.save_log_file: logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=paras.logging_level, filename=f'{paras.log_save_path}/{paras.train_log_file}', filemode='w') else: logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=paras.logging_level, ) device = 'cuda' if torch.cuda.is_available() else 'cpu' logger.info(f'Loading model: {paras.model_name}') tokenizer = BertTokenizer.from_pretrained(paras.model_name) bert = BertModel.from_pretrained(paras.model_name) train_dataset = RE_Dataset(paras, 'train') train_dataloaer = DataLoader(train_dataset, batch_size=paras.batch_size, shuffle=paras.shuffle, drop_last=paras.drop_last) label_to_index = train_dataset.label_to_index special_token_list = list(train_dataset.special_token_set) # fixme: add special token to tokenizer special_tokens_dict = {'additional_special_tokens': special_token_list} tokenizer.add_special_tokens(special_tokens_dict) # bert.resize_token_embeddings(len(tokenizer)) test_dataset = RE_Dataset(paras, 'test') test_dataloader = DataLoader(test_dataset, batch_size=paras.batch_size, shuffle=paras.shuffle, drop_last=paras.drop_last) bert_classifier = BertClassifier(bert, paras.hidden_size, paras.label_number, paras.dropout_prob) if paras.optimizer == 'adam': logger.info('Loading Adam optimizer.') optimizer = torch.optim.Adam(bert_classifier.parameters(), lr=paras.learning_rate) elif paras.optimizer == 'adamw': logger.info('Loading AdamW optimizer.') no_decay = [ 'bias', 'LayerNorm.weight' ] optimizer_grouped_parameters = [ {'params': [ p for n, p in bert_classifier.named_parameters() if not any(nd in n for nd in no_decay) ], 'weight_decay': 0.01}, {'params': [ p for n, p in bert_classifier.named_parameters() if any(nd in n for nd in no_decay) ], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=paras.learning_rate, eps=args.adam_epsilon) else: logger.warning(f'optimizer must be "Adam" or "AdamW", but got {paras.optimizer}.') logger.info('Loading Adam optimizer.') optimizer = torch.optim.Adam(bert_classifier.parameters(), lr=paras.learning_rate) logger.info('Training Start.') best_eval = {'acc': 0, 'precision': 0, 'recall': 0, 'f1': 0, 'loss': 0} for epoch in range(paras.num_train_epochs): epoch_loss = 0 bert_classifier.train() for step, batch in enumerate(train_dataloaer): optimizer.zero_grad() batch_data, batch_label = batch encoded_data = tokenizer(batch_data, padding=True, truncation=True, return_tensors='pt', max_length=paras.max_sequence_length) label_tensor = batch_label_to_idx(batch_label, label_to_index) loss = bert_classifier(encoded_data, label_tensor) epoch_loss += loss_to_int(loss) logging.info(f'epoch: {epoch}, step: {step}, loss: {loss:.4f}') # fixme: del # acc, precision, recall, f1 = evaluation(bert_classifier, tokenizer, test_dataloader, # paras.max_sequence_length, label_to_index) # logger.info(f'Accuracy: {acc:.4f}, Precision: {precision:.4f}, ' # f'Recall: {recall:.4f}, F1-score: {f1:.4f}') loss.backward() optimizer.step() epoch_loss = epoch_loss / len(train_dataloaer) acc, precision, recall, f1 = evaluation(bert_classifier, tokenizer, test_dataloader, paras.max_sequence_length, label_to_index) logging.info(f'Epoch: {epoch}, Epoch-Average Loss: {epoch_loss:.4f}') logger.info(f'Accuracy: {acc:.4f}, Precision: {precision:.4f}, ' f'Recall: {recall:.4f}, F1-score: {f1:.4f}') if best_eval['loss'] == 0 or f1 > best_eval['f1']: best_eval['loss'] = epoch_loss best_eval['acc'] = acc best_eval['precision'] = precision best_eval['recall'] = recall best_eval['f1'] = f1 torch.save(bert_classifier, f'{paras.log_save_path}/{paras.model_save_name}') with open(f'{paras.log_save_path}/{paras.checkpoint_file}', 'w') as wf: wf.write(f'Save time: {time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())}\n') wf.write(f'Best F1-score: {best_eval["f1"]:.4f}\n') wf.write(f'Precision: {best_eval["precision"]:.4f}\n') wf.write(f'Recall: {best_eval["recall"]:.4f}\n') wf.write(f'Accuracy: {best_eval["acc"]:.4f}\n') wf.write(f'Epoch-Average Loss: {best_eval["loss"]:.4f}\n') logger.info(f'Updated model, best F1-score: {best_eval["f1"]:.4f}\n') logger.info(f'Train complete, Best F1-score: {best_eval["f1"]:.4f}.')
def main(): # 参数设置 batch_size = 4 device = 'cuda' if torch.cuda.is_available() else 'cpu' epochs = 10 learning_rate = 5e-6 #Learning Rate不宜太大 # 获取到dataset train_dataset = CNewsDataset('data/cnews/cnews.train.txt') valid_dataset = CNewsDataset('data/cnews/cnews.val.txt') #test_data = load_data('cnews/cnews.test.txt') # 生成Batch train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=False) #test_dataloader = DataLoader(valid_data, batch_size=batch_size, shuffle=False) # 读取BERT的配置文件 bert_config = BertConfig.from_pretrained('bert-base-chinese') num_labels = len(train_dataset.labels) # 初始化模型 model = BertClassifier(bert_config, num_labels).to(device) optimizer = AdamW(model.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() best_acc = 0 for epoch in range(1, epochs + 1): losses = 0 # 损失 accuracy = 0 # 准确率 model.train() train_bar = tqdm(train_dataloader) for input_ids, token_type_ids, attention_mask, label_id in train_bar: model.zero_grad() train_bar.set_description('Epoch %i train' % epoch) output = model( input_ids=input_ids.to(device), attention_mask=attention_mask.to(device), token_type_ids=token_type_ids.to(device), ) loss = criterion(output, label_id.to(device)) losses += loss.item() pred_labels = torch.argmax(output, dim=1) # 预测出的label acc = torch.sum(pred_labels == label_id.to(device)).item() / len( pred_labels) #acc accuracy += acc loss.backward() optimizer.step() train_bar.set_postfix(loss=loss.item(), acc=acc) average_loss = losses / len(train_dataloader) average_acc = accuracy / len(train_dataloader) print('\tTrain ACC:', average_acc, '\tLoss:', average_loss) # 验证 model.eval() losses = 0 # 损失 accuracy = 0 # 准确率 valid_bar = tqdm(valid_dataloader) for input_ids, token_type_ids, attention_mask, label_id in valid_bar: valid_bar.set_description('Epoch %i valid' % epoch) output = model( input_ids=input_ids.to(device), attention_mask=attention_mask.to(device), token_type_ids=token_type_ids.to(device), ) loss = criterion(output, label_id.to(device)) losses += loss.item() pred_labels = torch.argmax(output, dim=1) # 预测出的label acc = torch.sum(pred_labels == label_id.to(device)).item() / len( pred_labels) #acc accuracy += acc valid_bar.set_postfix(loss=loss.item(), acc=acc) average_loss = losses / len(valid_dataloader) average_acc = accuracy / len(valid_dataloader) print('\tValid ACC:', average_acc, '\tLoss:', average_loss) if average_acc > best_acc: best_acc = average_acc torch.save(model.state_dict(), 'models/best_model.pkl')
def main(): device = torch.device('cuda:3') # 获取到dataset print('加载训练数据') train_data = load_data('dataset/train.csv') print('加载验证数据') valid_data = load_data('dataset/test.csv') # test_data = load_data('cnews/cnews.test.txt') batch_size = 16 # 生成Batch print('生成batch') train_dataloader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=3) valid_dataloader = DataLoader(valid_data, batch_size=batch_size, shuffle=False, num_workers=3) # test_dataloader = DataLoader(valid_data, batch_size=batch_size, shuffle=False) # 读取BERT的配置文件 bert_config = BertConfig.from_pretrained('./chinese_wwm_pytorch') bert_config.num_labels = num_labels print(bert_config) # 初始化模型 model = BertClassifier(bert_config) # model.to(device) # 参数设置 EPOCHS = 20 learning_rate = 5e-6 # Learning Rate不宜太大 optimizer = AdamW(model.parameters(), lr=learning_rate) # 损失函数采用交叉熵 criterion = nn.CrossEntropyLoss() with open('output.txt', 'w') as wf: wf.write('Batch Size: ' + str(batch_size) + '\tLearning Rate: ' + str(learning_rate) + '\n') best_acc = 0 # 设置并行训练,模型默认是把参数放在device[0]对应的gpu编号的gpu上,所以这里应该和上面设置的cuda:2对应 net = torch.nn.DataParallel(model, device_ids=[3, 4]) net.to(device) # model.module.avgpool = nn.AdaptiveAvgPool2d(7) # 开始训练 for Epoch in range(1, EPOCHS + 1): losses = 0 # 损失 accuracy = 0 # 准确率 print('Epoch:', Epoch) model.train() for batch_index, batch in enumerate(train_dataloader): # print(batch_index) # print(batch) input_ids = batch[0].to(device) attention_mask = batch[1].to(device) token_type_ids = batch[2].to(device) label_ids = batch[3].to(device) # 将三个输入喂到模型中 output = net( # forward input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, ) loss = criterion(output, label_ids) losses += loss.item() pred_labels = torch.argmax(output, dim=1) # 预测出的label acc = torch.sum(pred_labels == label_ids.to(device)).item() / len( pred_labels) # acc accuracy += acc # 打印训练过程中的准确率以及loss # print('Epoch: %d | Train: | Batch: %d / %d | Acc: %f | Loss: %f' % (Epoch, batch_index + 1, len(train_dataloader), acc, loss.item())) # 模型梯度置零,损失函数反向传播,优化更新 model.zero_grad() loss.backward() optimizer.step() # torch.cuda.empty_cache() average_loss = losses / len(train_dataloader) average_acc = accuracy / len(train_dataloader) # 打印该epoch训练结果的 print('\tTrain ACC:', average_acc, '\tLoss:', average_loss) # with open('output.txt', 'a') as rf: # output_to_file = '\nEpoch: ' + str(Epoch) + '\tTrain ACC:' + str(average_acc) + '\tLoss: ' + str( # average_loss) # rf.write(output_to_file) # 验证 model.eval() losses = 0 # 损失 accuracy = 0 # 准确率 # 在验证集上进行验证 for batch_index, batch in enumerate(valid_dataloader): input_ids = batch[0].to(device) attention_mask = batch[1].to(device) token_type_ids = batch[2].to(device) label_ids = batch[3].to(device) with torch.no_grad(): output = model( # forward input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, ) loss = criterion(output, label_ids) losses += loss.item() # 这里的两部操作都是直接对生成的结果张量进行操作 pred_labels = torch.argmax(output, dim=1) # 预测出的label acc = torch.sum(pred_labels == label_ids.to(device)).item() / len( pred_labels) # acc accuracy += acc average_loss = losses / len(valid_dataloader) average_acc = accuracy / len(valid_dataloader) print('\tValid ACC:', average_acc, '\tLoss:', average_loss) # with open('output.txt', 'a') as rf: # output_to_file = '\nEpoch: ' + str(Epoch) + '\tValid ACC:' + str(average_acc) + '\tLoss: ' + str( # average_loss) + '\n' # rf.write(output_to_file) if average_acc > best_acc: best_acc = average_acc torch.save(model.state_dict(), 'best_model_on_trainset.pkl')