def main(): input_params = { 'use_text': True, # 是否使用text 'use_img': True, # 是否使用img 'target': 'isclick' # 预测目标 } feature_columns, train_model_input, train_labels, test_model_input, test_labels = get_input( **input_params) iterations = 10 # 跑多次取平均 for i in range(iterations): print(f'iteration {i + 1}/{iterations}') model = DeepFM(feature_columns, feature_columns, use_image=input_params["use_img"], use_text=input_params["use_text"], embedding_size=10) model.compile("adagrad", "binary_crossentropy", metrics=["binary_crossentropy"]) history = model.fit(train_model_input, train_labels, batch_size=4096, epochs=1, verbose=1, validation_data=(test_model_input, test_labels))
model.compile(loss=tf.keras.losses.binary_crossentropy, optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), metrics=METRICS) # ---------早停法 ----- early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_auc', verbose=1, patience=10, mode='max', restore_best_weights=True) model.fit( train_X, train_y, epochs=epochs, # callbacks=[checkpoint], callbacks=[early_stopping, checkpoint], batch_size=batch_size, validation_split=0.1, validation_data=(val_X, val_y)) # class_weight={0:1, 1:3}, # 样本均衡 print('test AUC: %f' % model.evaluate(test_X, test_y)[1]) # ------------- model evaluation in test dataset ---- train_predictions_weighted = model.predict(train_X, batch_size=batch_size) test_predictions_weighted = model.predict(test_X, batch_size=batch_size) # ------------- confusion matrix from sklearn.metrics import confusion_matrix, roc_curve import matplotlib.pyplot as plt
v_reg = 1e-4 hidden_units = [256, 128, 64] output_dim = 1 activation = 'relu' model = DeepFM(k, w_reg, v_reg, hidden_units, output_dim, activation) optimizer = optimizers.SGD(0.01) train_dataset = tf.data.Dataset.from_tensor_slices((X_train, y_train)) train_dataset = train_dataset.batch(32).prefetch( tf.data.experimental.AUTOTUNE) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) model.fit(train_dataset, epochs=100) logloss, auc = model.evaluate(X_test, y_test) print('logloss {}\nAUC {}'.format(round(logloss, 2), round(auc, 2))) model.summary() # summary_writer = tf.summary.create_file_writer('E:\\PycharmProjects\\tensorboard') # for i in range(500): # with tf.GradientTape() as tape: # y_pre = model(X_train) # loss = tf.reduce_mean(losses.binary_crossentropy(y_true=y_train, y_pred=y_pre)) # print(loss.numpy()) # with summary_writer.as_default(): # tf.summary.scalar("loss", loss, step=i) # grad = tape.gradient(loss, model.variables) # optimizer.apply_gradients(grads_and_vars=zip(grad, model.variables))
# ============================Build Model========================== mirrored_strategy = tf.distribute.MirroredStrategy() with mirrored_strategy.scope(): model = DeepFM(feature_columns, hidden_units=hidden_units, dnn_dropout=dnn_dropout) model.summary() # ============================Compile============================ model.compile(loss=binary_crossentropy, optimizer=Adam(learning_rate=learning_rate), metrics=[AUC()]) # ============================model checkpoint====================== # check_path = '../save/deepfm_weights.epoch_{epoch:04d}.val_loss_{val_loss:.4f}.ckpt' # checkpoint = tf.keras.callbacks.ModelCheckpoint(check_path, save_weights_only=True, # verbose=1, period=5) # ==============================Fit============================== model.fit( train_X, train_y, epochs=epochs, callbacks=[ EarlyStopping(monitor='val_loss', patience=2, restore_best_weights=True) ], # checkpoint, batch_size=batch_size, validation_split=0.1) # ===========================Test============================== print('test AUC: %f' % model.evaluate(test_X, test_y, batch_size=batch_size)[1])
embed_dim=embed_dim, read_part=read_part, sample_num=sample_num, test_size=test_size) train_X, train_y = train test_X, test_y = test # ============================Build Model========================== model = DeepFM(feature_columns, k=k, hidden_units=hidden_units, dnn_dropout=dnn_dropout) model.summary() # ============================model checkpoint====================== # check_path = '../save/deepfm_weights.epoch_{epoch:04d}.val_loss_{val_loss:.4f}.ckpt' # checkpoint = tf.keras.callbacks.ModelCheckpoint(check_path, save_weights_only=True, # verbose=1, period=5) # ============================Compile============================ model.compile(loss=binary_crossentropy, optimizer=Adam(learning_rate=learning_rate), metrics=[AUC()]) # ==============================Fit============================== model.fit( train_X, train_y, epochs=epochs, # callbacks=[checkpoint], batch_size=batch_size, validation_split=0.1) # ===========================Test============================== print('test AUC: %f' % model.evaluate(test_X, test_y)[1])