Exemple #1
0
    def __init__(self, args, loader, model, ckp):
        self.args = args
        self.ckp = ckp
        self.model = model
        self.my_model = self.model.get_model()
        self.my_model.reset()
        self.loader_train, self.loader_test = loader
        self.device = torch.device('cpu' if args.cpu_only else 'cuda')

        self.loss = nn.CrossEntropyLoss()
        self.encoder = EncoderCNN.make_model(args).to(self.device)
        self.decoder = self.my_model.to(self.device)

        # IF gradient only in RNN + linear layer:
        if not self.args.fine_tune:
            print("Not fine tuning CNN")
            self.params = list(self.decoder.parameters()) + list(
                self.encoder.linear.parameters()) + list(
                    self.encoder.bn.parameters())
        else:
            print("Fine tuning CNN")
            self.params = list(self.decoder.parameters()) + list(
                self.encoder.parameters())

        # only train decoder
        self.optimizer = optim.Adam(self.params, args.learning_rate)  # ADAM
        # self.optimizer = optim.SGD(self.params, args.learning_rate, momentum=0.8)   # SGD

        self.lr_scheduler = set_scheduler(args, self.optimizer)

        if args.cpu_only:
            kwargs = {'map_location': lambda storage, loc: storage}
        else:
            kwargs = {}
        if args.load_path != '.':
            if args.pre_train != '.':
                print('Load model from : {}'.format(args.pre_train))
                self.my_model.load_state_dict(torch.load(
                    args.pre_train, **kwargs),
                                              strict=False)
            else:
                if not self.args.test_only:
                    print('Load model from : {}'.format(
                        os.path.join(ckp.log_dir, 'model', 'model_latest.pt')))
                    self.my_model.load_state_dict(torch.load(
                        os.path.join(ckp.log_dir, 'model', 'model_latest.pt'),
                        **kwargs),
                                                  strict=False)
                else:
                    print('Load model from : {}'.format(
                        os.path.join(ckp.log_dir, 'model', 'model_best.pt')))
                    self.my_model.load_state_dict(torch.load(
                        os.path.join(ckp.log_dir, 'model', 'model_best.pt'),
                        **kwargs),
                                                  strict=False)

            if not self.args.test_only:
                self.optimizer.load_state_dict(
                    torch.load(os.path.join(ckp.log_dir, 'optimizer.pt')))
                for _ in range(1, len(ckp.loss.result)):
                    self.lr_scheduler.step()
Exemple #2
0
import torch
import numpy as np
import cv2
from model import EncoderCNN
from model import CRNNv2
from option import args
from data import common


device = torch.device('cpu')
encoder = EncoderCNN.make_model(args)
encoder.eval()
decoder = CRNNv2.make_model(args)
decoder.eval()

encoder.load_state_dict(torch.load('./Inference_model/model_enc_best.pt', map_location='cpu'))
decoder.load_state_dict(torch.load('./Inference_model/model_best.pt', map_location='cpu'))
print("Model Loaded")

#read image
img = np.zeros((1,96,480))
img_read = cv2.imread('trial.png',0)
img_read = cv2.resize(img_read, (480, 96), interpolation = cv2.INTER_NEAREST)
img_read[img_read>100]=255
cv2.imwrite('input_img.png',img_read)

img_read = common.normalize_img(img_read)
print(img_read.shape)
img_read_expanded = np.expand_dims(img_read, axis=0)
img = img_read_expanded
img = np.expand_dims(img, axis=0)