Exemple #1
0
def main(args):
    num_frames = 15
    ms_per_frame = 40

    network = EncoderDecoder(args).cuda()
    optimizer = torch.optim.Adam(network.parameters(), lr=args.lr, betas=(0.9, 0.99))
    criterion = nn.MSELoss()

    train_loader, dev_loader, test_loader = fetch_kth_data(args)

    # test_tens = next(iter(train_loader))['instance'][0, :, :, :, :].transpose(0, 1)
    # print(test_tens.shape)
    # save_image(test_tens, './img/test_tens.png')
    # print(next(iter(train_loader))['instance'][0, :, 0, :, :].shape)
    train_loss = []
    dev_loss = []
    for epoch in range(args.epochs):
        epoch_loss = 0
        batch_num = 0
        for item in train_loader:
            #label = item['label']
            item = item['instance'].cuda()

            frames_processed = 0
            batch_loss = 0

            # fit a whole batch for all the different milliseconds
            for i in range(num_frames-1):
                for j in range(i+1, num_frames):
                    network.zero_grad()
                    frame_diff = j - i
                    time_delta = torch.tensor(frame_diff * ms_per_frame).float().repeat(args.batch_size).cuda()
                    time_delta.requires_grad = True

                    seq = item[:, :, i, :, :]
                    #print(seq.shape)

                    # downsample
                    #seq = F.interpolate(seq, size=(64, 64))
                    #print(seq.shape)

                    seq.requires_grad = True

                    seq_targ = item[:, :, j, :, :]

                    # downsample
                    #seq_targ = F.interpolate(seq_targ, size=(64, 64))

                    seq_targ.requires_grad = False

                    assert seq.requires_grad and time_delta.requires_grad, 'No Gradients'

                    outputs = network(seq, time_delta)
                    error = criterion(outputs, seq_targ)
                    error.backward()
                    optimizer.step()

                    batch_loss += error.cpu().item()
                    frames_processed += 1

                    if i == 0:
                        save_image(outputs, '/scratch/eecs-share/dinkinst/kth/img/train_output_{}_epoch_{}.png'.format(j, epoch))

            batch_num += 1
            epoch_loss += batch_loss
            print('Epoch {} Batch #{} Total Error {}'.format(epoch, batch_num, batch_loss))
        print('\nEpoch {} Total Loss {} Scaled Loss {}\n'.format(epoch, epoch_loss, epoch_loss/frames_processed))
        train_loss.append(epoch_loss)
        if epoch % 10 == 0:
            torch.save(network.state_dict(), KTH_PATH+str('/model_new_{}.pth'.format(epoch)))
            torch.save(optimizer.state_dict(), KTH_PATH+str('/optim_new_{}.pth'.format(epoch)))

        dev_loss.append(eval_model(network, dev_loader, epoch))
        network.train()

    plt.plot(range(args.epochs), train_loss)
    plt.grid()
    plt.savefig('/scratch/eecs-share/dinkinst/kth/img/loss_train.png', dpi=64)
    plt.close('all')
    plt.plot(range(args.epochs), dev_loss)
    plt.grid()
    plt.savefig('/scratch/eecs-share/dinkinst/kth/img/loss_dev.png', dpi=64)
    plt.close('all')
Exemple #2
0
def train(train_loader,
          test_loader,
          gradient_clipping=1,
          hidden_state_size=10,
          lr=0.001,
          epochs=100,
          classify=True):
    model = EncoderDecoder(input_size=28, hidden_size=hidden_state_size, output_size=28, labels_num=10) if not classify \
        else EncoderDecoder(input_size=28, hidden_size=hidden_state_size, output_size=28, is_prediction=True,
                            labels_num=10)
    model = model.to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    loss_name = "mse"
    min_loss = float("inf")
    task_name = "classify" if classify else "reconstruct"
    validation_losses = []
    validation_accuracies = []
    tensorboard_writer = init_writer(results_path, lr, classify,
                                     hidden_state_size, epochs)
    for epoch in range(1, epochs):
        total_loss = 0
        total_batches = 0
        for batch_idx, (data, target) in enumerate(train_loader):
            data = data.to(device)
            target = target.to(device)
            # data_sequential = data # turn each image to vector sized 784
            data_sequential = data.view(data.shape[0], 28, 28)
            optimizer.zero_grad()
            if classify:
                resconstucted_batch, batch_pred_probs = model(data_sequential)
                loss = model.loss(data_sequential, resconstucted_batch, target,
                                  batch_pred_probs)
            else:
                resconstucted_batch = model(data_sequential)
                loss = model.loss(data_sequential, resconstucted_batch)
            total_loss += loss.item()
            loss.backward()
            if gradient_clipping:
                nn.utils.clip_grad_norm_(model.parameters(),
                                         max_norm=gradient_clipping)
            optimizer.step()
            total_batches += 1

        epoch_loss = total_loss / total_batches

        tensorboard_writer.add_scalar('train_loss', epoch_loss, epoch)
        print(f'Train Epoch: {epoch} \t loss: {epoch_loss}')

        validation_loss = validation(model, test_loader, validation_losses,
                                     device, classify, validation_accuracies,
                                     tensorboard_writer, epoch)
        model.train()

        if epoch % 5 == 0 or validation_loss < min_loss:
            file_name = f"ae_toy_{loss_name}_lr={lr}_hidden_size={hidden_state_size}_epoch={epoch}_gradient_clipping={gradient_clipping}.pt"
            path = os.path.join(results_path, "saved_models", "MNIST_task",
                                task_name, file_name)
            torch.save(model, path)

        min_loss = min(validation_loss, min_loss)

    plot_validation_loss(epochs, gradient_clipping, lr, loss_name,
                         validation_losses, hidden_state_size, task_name)
    if classify:
        plot_validation_acc(epochs, gradient_clipping, lr, loss_name,
                            validation_accuracies, hidden_state_size,
                            task_name)
Exemple #3
0
def train(train_loader,
          validate_data,
          device,
          gradient_clipping=1,
          hidden_state_size=10,
          lr=0.001,
          opt="adam",
          epochs=1000,
          batch_size=32):
    model = EncoderDecoder(1, hidden_state_size, 1, 50).to(device)
    validate_data = validate_data.to(device)
    if (opt == "adam"):
        optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    else:
        optimizer = torch.optim.RMSprop(model.parameters(), lr=lr)
    optimizer_name = 'adam' if 'adam' in str(optimizer).lower() else 'mse'

    mse = nn.MSELoss()
    min_loss = float("inf")
    best_loss_global = float("inf")
    min_in, min_out = None, None
    validation_losses = []
    for epoch in range(0, epochs):
        total_loss = 0
        for batch_idx, data in enumerate(train_loader):
            data = data.to(device)
            optimizer.zero_grad()
            output = model(data)
            loss = mse(output, data)
            total_loss += loss.item()
            if loss.item() < min_loss:
                min_loss = loss.item()
                min_in, min_out = data, output
            loss.backward()
            if gradient_clipping:
                nn.utils.clip_grad_norm_(model.parameters(),
                                         max_norm=gradient_clipping)

            optimizer.step()

        epoch_loss = total_loss / len(train_loader)
        best_loss_global = min(best_loss_global, epoch_loss)
        print(f'Train Epoch: {epoch} \t loss: {epoch_loss}')

        if epoch % 100 == 0:
            path = f'{results_path}saved_models/ae_toy_{optimizer_name}_lr={lr}_hidden_size={hidden_state_size}_' \
                   f'_gradient_clipping={gradient_clipping}_'
            create_folders(path)
            torch.save(model,
                       path + f"/epoch={epoch}_bestloss={best_loss_global}.pt")

            # run validation        if epoch % 20 == 0:
            model.eval()
            mse.eval()
            output = model(validate_data)
            loss = mse(output,
                       validate_data)  # print("Accuracy: {:.4f}".format(acc))
            validation_losses.append(loss.item())
            mse.train()
            model.train()

    plot_sequence_examples(epochs, gradient_clipping, lr, min_in, min_out,
                           optimizer_name, batch_size)

    plot_validation_loss(epochs, gradient_clipping, lr, optimizer_name,
                         validation_losses, batch_size)
Exemple #4
0
def train(resume_training=True):

    EMBEDDING_SIZE = 32
    num_hiddens, num_layers, dropout, batch_size, num_steps = EMBEDDING_SIZE, 2, 0.1, 64, 10
    lr, num_epochs, device = 0.005, 1000, d2lt.try_gpu()
    ffn_num_input, ffn_num_hiddens, num_heads = EMBEDDING_SIZE, 64, 4
    key_size, query_size, value_size = EMBEDDING_SIZE, EMBEDDING_SIZE, EMBEDDING_SIZE
    norm_shape = [EMBEDDING_SIZE]

    ### Load data
    data_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size, num_steps)
    encoder = TransformerEncoder(len(src_vocab), key_size, query_size,
                                 value_size, num_hiddens, norm_shape,
                                 ffn_num_input, ffn_num_hiddens, num_heads,
                                 num_layers, dropout)
    decoder = TransformerDecoder(len(tgt_vocab), key_size, query_size,
                                 value_size, num_hiddens, norm_shape,
                                 ffn_num_input, ffn_num_hiddens, num_heads,
                                 num_layers, dropout)

    ### Load model
    model = EncoderDecoder(encoder, decoder).to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)

    ### Load checkpoint
    if resume_training and PATH_MODEL.exists(
    ) and os.path.getsize(PATH_MODEL) > 0:
        model, optimizer, last_epoch = load_checkpoint(model, optimizer)
        print("Continue training from last checkpoint...")
    else:
        if not os.path.exists(checkpoint_path):
            os.makedirs(checkpoint_path)
        with open(PATH_MODEL, 'w') as fp:
            pass
        print(
            'No prior checkpoint existed, created new save files for checkpoint.'
        )
        model.apply(xavier_init_weights)
        last_epoch = 0

    # model.apply(xavier_init_weights)
    # model.to(device)
    # optimizer = torch.optim.Adam(model.parameters(), lr=lr)

    ### Initialize Loss functions
    loss = MaskedSoftmaxCELoss()

    ### Train
    model.train()
    # animator = d2lt.Animator(xlabel='epoch', ylabel='loss',
    # xlim=[10, num_epochs])
    for epoch in range(last_epoch, num_epochs):
        timer = d2lt.Timer()
        metric = d2lt.Accumulator(2)  # Sum of training loss, no. of tokens
        for batch in data_iter:
            X, X_valid_len, Y, Y_valid_len = [x.to(device) for x in batch]
            bos = torch.tensor([tgt_vocab['<bos>']] * Y.shape[0],
                               device=device).reshape(-1, 1)
            dec_input = torch.cat([bos, Y[:, :-1]], 1)  # Teacher forcing
            Y_hat, _ = model(X, dec_input, X_valid_len)
            l = loss(Y_hat, Y, Y_valid_len)
            l.sum().backward()  # Make the loss scalar for `backward`
            d2lt.grad_clipping(model, 1)
            num_tokens = Y_valid_len.sum()
            optimizer.step()
            with torch.no_grad():
                metric.add(l.sum(), num_tokens)
        if (epoch + 1) % 10 == 0:
            # animator.add(epoch + 1, (metric[0] / metric[1],))
            print(f'epoch {epoch + 1} - ' f'loss {metric[0] / metric[1]:.5f}')

        ### Save checkpoint
        save_checkpoint(epoch, model, optimizer)
    print(f'loss {metric[0] / metric[1]:.5f}, {metric[1] / timer.stop():.1f} '
          f'tokens/sec on {str(device)}')