Exemple #1
0
    def load_resource(self):
        self.player = cv2.imread(os.path.join(self.resource_dir, 'player.png'),
                                 0)
        # network initization
        self.net = JumpModel()
        self.net_fine = JumpModelFine()
        self.img = tf.placeholder(tf.float32, [None, 640, 720, 3], name='img')
        self.img_fine = tf.placeholder(tf.float32, [None, 320, 320, 3],
                                       name='img_fine')
        self.label = tf.placeholder(tf.float32, [None, 2], name='label')
        self.is_training = tf.placeholder(np.bool, name='is_training')
        self.keep_prob = tf.placeholder(np.float32, name='keep_prob')
        self.pred = self.net.forward(self.img, self.is_training,
                                     self.keep_prob)
        self.pred_fine = self.net_fine.forward(self.img_fine, self.is_training,
                                               self.keep_prob)

        self.sess = tf.Session()
        self.sess.run(tf.global_variables_initializer())
        all_vars = tf.all_variables()
        var_coarse = [k for k in all_vars if k.name.startswith('coarse')]
        var_fine = [k for k in all_vars if k.name.startswith('fine')]
        self.saver_coarse = tf.train.Saver(var_coarse)
        self.saver_fine = tf.train.Saver(var_fine)
        self.saver_coarse.restore(self.sess, self.ckpt)
        self.saver_fine.restore(self.sess, self.ckpt_fine)
        print('==== successfully restored ====')
def inference(path):
    net = JumpModel()
    img = tf.placeholder(tf.float32, [None, 640, 720, 3], name='img')
    label = tf.placeholder(tf.float32, [None, 2], name='label')
    is_training = tf.placeholder(np.bool, name='is_training')
    keep_prob = tf.placeholder(np.float32, name='keep_prob')
    lr = tf.placeholder(np.float32, name='lr')

    pred = net.forward(img, is_training, keep_prob)
    saver = tf.train.Saver()

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    ckpt = tf.train.get_checkpoint_state('./train_logs')
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
        print('==== successfully restored ====')

    val_img = get_a_img(path)
    feed_dict = {
        img: val_img,
        is_training: False,
        keep_prob: 1.0,
    }
    pred_out = sess.run(pred, feed_dict=feed_dict)
    return pred_out
Exemple #3
0
    def load_resource(self):
        self.player = cv2.imread(os.path.join(self.resource_dir, 'player.png'),
                                 0)
        # network initization
        self.net = JumpModel()
        self.img = tf.placeholder(tf.float32, [None, 640, 720, 3], name='img')
        self.label = tf.placeholder(tf.float32, [None, 2], name='label')
        self.is_training = tf.placeholder(np.bool, name='is_training')
        self.keep_prob = tf.placeholder(np.float32, name='keep_prob')
        self.pred = self.net.forward(self.img, self.is_training,
                                     self.keep_prob)
        self.saver = tf.train.Saver()

        self.sess = tf.Session()
        self.sess.run(tf.global_variables_initializer())
        ckpt = tf.train.get_checkpoint_state(
            os.path.join(self.resource_dir, 'train_logs2'))
        if ckpt and ckpt.model_checkpoint_path:
            self.saver.restore(self.sess, ckpt.model_checkpoint_path)
            print('==== successfully restored ====')
Exemple #4
0
    def load_resource(self):
        self.player = cv2.imread(os.path.join(self.resource_dir, 'player.png'),
                                 0)
        # network initialization
        self.net = JumpModel()
        self.net_fine = JumpModelFine()

        self.img = tf.placeholder(tf.float32,
                                  shape=(None, 640, 720, 3),
                                  name='img')
        self.img_fine = tf.placeholder(tf.float32,
                                       shape=(None, 320, 320, 3),
                                       name='img_fine')

        self.label = tf.placeholder(tf.float32, [None, 2], name='label')

        self.is_training = tf.placeholder(np.bool, name='is_training')
        self.keep_prob = tf.placeholder(
            np.float32, name='keep_prob')  # get_target_position()用到
        # 这里的第三个参数self.keep_prob必须是string类型的
        # self.pred = self.net.forward(self.img, self.is_training, self.keep_prob)
        # self.pred_fine = self.net_fine.forward(self.img_fine, self.is_training, self.keep_prob)
        # 第三个参数直接写成string类型,两个模型-分别为 coarse 与 fine
        self.pred = self.net.forward(self.img, self.is_training, "coarse")
        self.pred_fine = self.net_fine.forward(self.img_fine, self.is_training,
                                               "fine")

        self.sess = tf.Session()
        self.sess.run(tf.global_variables_initializer())
        all_vars = tf.global_variables(
        )  # tf.all_variables()  # Please use tf.global_variables instead.
        var_coarse = [k for k in all_vars if k.name.startswith('coarse')]
        var_fine = [k for k in all_vars if k.name.startswith('fine')]
        self.saver_coarse = tf.train.Saver(var_coarse)
        self.saver_fine = tf.train.Saver(var_fine)
        self.saver_coarse.restore(self.sess, self.ckpt)
        self.saver_fine.restore(self.sess, self.ckpt_fine)
        print('==== successfully restored ====')
Exemple #5
0
                6], name[name.index('_w_') + 3:name.index('_w_') + 6]
    x, y = int(x), int(y)
    img = cv2.imread(img_name)
    label = np.array([x, y], dtype=np.float32)
    return img[np.newaxis, :, :, :], label.reshape((1, label.shape[0]))


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('-g', '--gpu', default=None, type=int)
    args = parser.parse_args()

    if args is not None:
        os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)

    net = JumpModel()
    dataset = JumpData()
    img = tf.placeholder(tf.float32, [None, 640, 720, 3], name='img')
    label = tf.placeholder(tf.float32, [None, 2], name='label')
    is_training = tf.placeholder(np.bool, name='is_training')
    keep_prob = tf.placeholder(np.float32, name='keep_prob')
    lr = tf.placeholder(np.float32, name='lr')

    pred = net.forward(img, is_training, keep_prob, 'coarse')
    loss = tf.reduce_mean(tf.sqrt(tf.pow(pred - label, 2) + 1e-12))
    tf.summary.scalar('loss', loss)
    optimizer = tf.train.AdamOptimizer(lr)
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
        train_op = optimizer.minimize(loss)
    saver = tf.train.Saver()