parser.add_argument('--model-dir', type=str, default=os.environ['SM_MODEL_DIR'])
    parser.add_argument('--data-dir', type=str, default=os.environ['SM_CHANNEL_TRAINING'])
    parser.add_argument('--num-gpus', type=int, default=os.environ['SM_NUM_GPUS'])

    args = parser.parse_args()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("Using device {}.".format(device))

    torch.manual_seed(args.seed)

    # Load the training data.
    train_loader = _get_train_data_loader(args.batch_size, args.data_dir)

    # Build the model.
    model = LSTMClassifier(args.embedding_dim, args.hidden_dim, args.vocab_size).to(device)

    with open(os.path.join(args.data_dir, "word_dict.pkl"), "rb") as f:
        model.word_dict = pickle.load(f)

    print("Model loaded with embedding_dim {}, hidden_dim {}, vocab_size {}.".format(
        args.embedding_dim, args.hidden_dim, args.vocab_size
    ))

    # Train the model.
    optimizer = optim.Adam(model.parameters())
    loss_fn = torch.nn.BCELoss()

    train(model, train_loader, args.epochs, optimizer, loss_fn, device)

    # Save the parameters used to construct the model
Exemple #2
0
    parser.add_argument('--num-gpus',
                        type=int,
                        default=os.environ['SM_NUM_GPUS'])

    args = parser.parse_args()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("Using device {}.".format(device))

    torch.manual_seed(args.seed)

    # Load the training data.
    train_loader = _get_train_data_loader(args.batch_size, args.data_dir)

    # Build the model.
    model = LSTMClassifier(args.embedding_dim, args.hidden_dim,
                           args.vocab_size).to(device)

    with open(os.path.join(args.data_dir, "word_dict.pkl"), "rb") as f:
        model.word_dict = pickle.load(f)

    print("Model loaded with embedding_dim {}, hidden_dim {}, vocab_size {}.".
          format(args.embedding_dim, args.hidden_dim, args.vocab_size))

    # Train the model.
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    loss_fn = torch.nn.BCELoss()
    print(model)
    print(len(list(model.parameters())))
    for i in range(len(list(model.parameters()))):
        print(list(model.parameters())[i].size())
Exemple #3
0
import torch.nn as nn
import pandas as pd

# 元データを7:3に分ける
train_data, test_data = train_test_split(datasets, train_size=0.7)

# 単語のベクトル次元数
EMBEDDING_DIM = 10
# 隠れ層の次元数
HIDDEN_DIM = 128
# データ全体の単語数
VOCAB_SIZE = len(word2index)
# 分類先のカテゴリの数
TAG_SIZE = len(categories)
# モデル宣言
model = LSTMClassifier(EMBEDDING_DIM, HIDDEN_DIM, VOCAB_SIZE, TAG_SIZE)
# 損失関数はNLLLoss()。LogSoftmaxにはこれを使うことが多い。
loss_function = nn.NLLLoss()
# 最適化はSGD。lossの減りに多少時間がかかる。
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 各エポックの合計loss値を格納
losses = []

for epoch in range(100):
    all_loss = 0
    for title, cat in zip(train_data["title"], train_data["category"]):
        # モデルが持っている勾配の情報をリセット
        model.zero_grad()
        # 文章を単語IDの系列に変換(modelが読み込めるように)
        inputs = sentence2index(title)
Exemple #4
0
def main():
    data, labels = read_imdb_data()
    train_X, test_X, train_y, test_y = prepare_imdb_data(data, labels)
    #storing the preprocess data as cache
    cache_dir = os.path.join(
        "cache", "sentiment_analysis")  # where to store cache files
    os.makedirs(cache_dir, exist_ok=True)  # ensure cache directory exists
    # Preprocess data
    train_X, test_X, train_y, test_y = preprocess_data(train_X, test_X,
                                                       train_y, test_y,
                                                       cache_dir)
    #building word dict from reviews
    word_dict = build_dict(train_X)
    #now we store word dict for future references
    data_dir = 'data/pytorch'  # The folder we will use for storing data
    if not os.path.exists(data_dir):  # Make sure that the folder exists
        os.makedirs(data_dir)
    with open(os.path.join(data_dir, 'word_dict.pkl'), "wb") as f:
        pickle.dump(word_dict, f)

    train_X, train_X_len = convert_and_pad_data(word_dict, train_X)
    test_X, test_X_len = convert_and_pad_data(word_dict, test_X)

    #store processed data
    pd.concat([pd.DataFrame(train_y), pd.DataFrame(train_X_len), pd.DataFrame(train_X)], axis=1) \
        .to_csv(os.path.join(data_dir, 'train.csv'), header=False, index=False)

    loadEnv()
    # Accessing variables.
    access_key_id = os.getenv('ACCESS_KEY_ID')
    secret_key = os.getenv('SECRET_KEY')
    region = os.getenv('AWS_REGION')
    execution_role = os.getenv('EXEC_ROLE')
    # create sagemaker session
    session = boto3.Session(aws_access_key_id=access_key_id,
                            aws_secret_access_key=secret_key,
                            region_name=region)

    sagemaker_session = sagemaker.Session(boto_session=session)

    #update data to s3 bucket
    bucket = sagemaker_session.default_bucket()
    prefix = 'sagemaker/sentiment_rnn'
    role = execution_role
    input_data = sagemaker_session.upload_data(path=data_dir,
                                               bucket=bucket,
                                               key_prefix=prefix)

    # Read in only the first 250 rows
    train_sample = pd.read_csv(os.path.join(data_dir, 'train.csv'),
                               header=None,
                               names=None,
                               nrows=250)

    # Turn the input pandas dataframe into tensors
    train_sample_y = torch.from_numpy(
        train_sample[[0]].values).float().squeeze()
    train_sample_X = torch.from_numpy(train_sample.drop([0],
                                                        axis=1).values).long()

    # Build the dataset
    train_sample_ds = torch.utils.data.TensorDataset(train_sample_X,
                                                     train_sample_y)
    # Build the dataloader
    train_sample_dl = torch.utils.data.DataLoader(train_sample_ds,
                                                  batch_size=50)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    lstm_model = LSTMClassifier(32, 100, 5000).to(device)
    optimizer = optim.Adam(lstm_model.parameters())
    loss_fn = torch.nn.BCELoss()

    train(lstm_model, train_sample_dl, 5, optimizer, loss_fn, device)

    estimator = PyTorch(entry_point="train.py",
                        source_dir="train",
                        role=role,
                        framework_version='0.4.0',
                        train_instance_count=1,
                        train_instance_type='ml.m4.xlarge',
                        hyperparameters={
                            'epochs': 10,
                            'hidden_dim': 200,
                        })
    estimator.fit({'training': input_data})

    # Deploy the trained model
    class StringPredictor(RealTimePredictor):
        def __init__(self, endpoint_name, sagemaker_session):
            super(StringPredictor, self).__init__(endpoint_name,
                                                  sagemaker_session,
                                                  content_type='text/plain')

    py_model = PyTorchModel(model_data=estimator.model_data,
                            role=role,
                            framework_version='0.4.0',
                            entry_point='predict.py',
                            source_dir='serve',
                            predictor_cls=StringPredictor)
    pytorch_predictor = py_model.deploy(initial_instance_count=1,
                                        instance_type='ml.m4.xlarge')
    print(pytorch_predictor.endpoint)
    return
def main():
    parser = argparse.ArgumentParser(
        description='PyTorch Gambler\'s Loss Runner')

    parser.add_argument('--result_dir',
                        type=str,
                        help='directory to save result txt files',
                        default='results')
    parser.add_argument('--noise_rate',
                        type=float,
                        help='corruption rate, should be less than 1',
                        default=0.5)
    parser.add_argument('--noise_type',
                        type=str,
                        help='[pairflip, symmetric]',
                        default='symmetric')
    parser.add_argument('--dataset',
                        type=str,
                        help='mnist, cifar10, or imdb',
                        default='mnist')
    parser.add_argument('--n_epoch', type=int, default=10)
    parser.add_argument('--seed', type=int, default=1)
    parser.add_argument('--num_workers',
                        type=int,
                        default=4,
                        help='how many subprocesses to use for data loading')
    parser.add_argument('--epoch_decay_start', type=int, default=80)
    parser.add_argument('--load_model', type=str, default="")
    parser.add_argument('--model', type=str, default='default')
    parser.add_argument('--batch_size',
                        type=int,
                        default=128,
                        metavar='N',
                        help='input batch size for training (default: 128)')
    parser.add_argument(
        '--log-interval',
        type=int,
        default=100,
        metavar='N',
        help=
        'how many batches to wait before logging training status (default: 100)'
    )

    parser.add_argument('--lr',
                        type=float,
                        default=0.001,
                        metavar='LR',
                        help='learning rate (default: 0.001)')
    parser.add_argument('--eps',
                        type=float,
                        help='set lambda for lambda type \'gmblers\' only',
                        default=1000.0)
    parser.add_argument('--lambda_type',
                        type=str,
                        help='[nll, euc, mid, exp, gmblers]',
                        default="euc")
    parser.add_argument('--start_gamblers',
                        type=int,
                        help='number of epochs before starting gamblers',
                        default=0)

    # label smoothing args
    parser.add_argument('--smoothing',
                        type=float,
                        default=1.0,
                        help='smoothing parameter (default: 1)')

    args = parser.parse_args()
    args.use_scheduler = False

    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)

    if args.dataset == 'mnist':
        input_channel = 1
        num_classes = 10
        train_dataset = MNIST(root='./data/',
                              download=True,
                              train=True,
                              transform=transforms.ToTensor(),
                              noise_type=args.noise_type,
                              noise_rate=args.noise_rate)
        test_dataset = MNIST(root='./data/',
                             download=True,
                             train=False,
                             transform=transforms.ToTensor(),
                             noise_type=args.noise_type,
                             noise_rate=args.noise_rate)
        print('loading dataset...')
        train_loader = torch.utils.data.DataLoader(
            dataset=train_dataset,
            batch_size=args.batch_size,
            num_workers=args.num_workers,
            drop_last=True,
            shuffle=True)
        test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                                  batch_size=args.batch_size,
                                                  num_workers=args.num_workers,
                                                  drop_last=True,
                                                  shuffle=False)

    if args.dataset == 'cifar10':
        input_channel = 3
        num_classes = 10
        transform_train = transforms.Compose([
            transforms.RandomCrop(32, padding=4),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465),
                                 (0.2023, 0.1994, 0.2010)),
        ])

        transform_test = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465),
                                 (0.2023, 0.1994, 0.2010)),
        ])
        train_dataset = CIFAR10(root='./data/',
                                download=True,
                                train=True,
                                transform=transform_train,
                                noise_type=args.noise_type,
                                noise_rate=args.noise_rate)
        test_dataset = CIFAR10(root='./data/',
                               download=True,
                               train=False,
                               transform=transform_test,
                               noise_type=args.noise_type,
                               noise_rate=args.noise_rate)
        print('loading dataset...')
        train_loader = torch.utils.data.DataLoader(
            dataset=train_dataset,
            batch_size=args.batch_size,
            num_workers=args.num_workers,
            drop_last=True,
            shuffle=True)
        test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                                  batch_size=args.batch_size,
                                                  num_workers=args.num_workers,
                                                  drop_last=True,
                                                  shuffle=False)

    if args.dataset == 'cifar100':
        input_channel = 3
        num_classes = 100
        transform_train = transforms.Compose([
            transforms.RandomCrop(32, padding=4),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465),
                                 (0.2023, 0.1994, 0.2010)),
        ])

        transform_test = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465),
                                 (0.2023, 0.1994, 0.2010)),
        ])
        train_dataset = CIFAR100(root='./data/',
                                 download=True,
                                 train=True,
                                 transform=transform_train,
                                 noise_type=args.noise_type,
                                 noise_rate=args.noise_rate)
        test_dataset = CIFAR100(root='./data/',
                                download=True,
                                train=False,
                                transform=transform_test,
                                noise_type=args.noise_type,
                                noise_rate=args.noise_rate)
        print('loading dataset...')
        train_loader = torch.utils.data.DataLoader(
            dataset=train_dataset,
            batch_size=args.batch_size,
            num_workers=args.num_workers,
            drop_last=True,
            shuffle=True)
        test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                                  batch_size=args.batch_size,
                                                  num_workers=args.num_workers,
                                                  drop_last=True,
                                                  shuffle=False)

    if args.dataset == 'imdb':
        num_classes = 2
        embedding_length = 300
        hidden_size = 256
        print('loading dataset...')
        TEXT, vocab_size, word_embeddings, train_loader, valid_iter, test_loader = load_data.load_dataset(
            rate=args.noise_rate, batch_size=args.batch_size)

    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    print("using {}".format(device))

    print('building model...')
    if args.dataset == 'mnist':
        model = CNN_basic(num_classes=num_classes).to(device)
        optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)
    if args.dataset == 'cifar10':
        if args.model == 'small':
            model = CNN_small(num_classes=num_classes).to(device)
            optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)
        else:
            model = resnet.ResNet18(num_classes=num_classes).to(device)
            change_lr = lambda epoch: 0.1 if epoch >= 50 else 1.0
            optimizer = LaProp(filter(lambda p: p.requires_grad,
                                      model.parameters()),
                               lr=4e-4)
            scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
                                                          lr_lambda=change_lr)
            args.use_scheduler = True
    if args.dataset == 'cifar100':
        if args.model == 'small':
            model = CNN_small(num_classes=num_classes).to(device)
            optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)
        else:
            model = resnet.ResNet18(num_classes=num_classes).to(device)
            change_lr = lambda epoch: 0.1 if epoch >= 50 else 1.0
            optimizer = LaProp(filter(lambda p: p.requires_grad,
                                      model.parameters()),
                               lr=4e-4)
            scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
                                                          lr_lambda=change_lr)
            args.use_scheduler = True
    if args.dataset == 'imdb':
        model = LSTMClassifier(args.batch_size, num_classes, hidden_size,
                               vocab_size, embedding_length,
                               word_embeddings).to(device)
        optimizer = LaProp(filter(lambda p: p.requires_grad,
                                  model.parameters()),
                           lr=args.lr)

    test_accs = []
    train_losses = []
    test_losses = []
    out = []

    name = "{}_{}_{:.2f}_{:.2f}_{}_{}".format(args.dataset, args.noise_type,
                                              args.smoothing, args.noise_rate,
                                              args.eps, args.seed)

    if not os.path.exists(args.result_dir):
        os.system('mkdir -p %s' % args.result_dir)

    save_file = args.result_dir + "/" + name + ".json"
    if os.path.exists(save_file):
        print('case processed')
        exit()

    for epoch in range(1, args.n_epoch + 1):
        for param_group in optimizer.param_groups:
            print(epoch, param_group['lr'])
        print(name)
        train_loss = train(args,
                           model,
                           device,
                           train_loader,
                           optimizer,
                           epoch,
                           num_classes=num_classes,
                           use_gamblers=(epoch >= args.start_gamblers),
                           text=(args.dataset == 'imdb'))
        train_losses.append(train_loss)
        test_acc, test_loss = test(args,
                                   model,
                                   device,
                                   test_loader,
                                   num_classes,
                                   text=(args.dataset == 'imdb'))
        test_accs.append(test_acc)
        test_losses.append(test_loss)

        if (args.use_scheduler):
            scheduler.step()

        # torch.save({
        #     'model_state_dict': model.state_dict(),
        #     'optimizer_state_dict': optimizer.state_dict(),
        #     'loss': loss,
        #     'test_acc': acc
        # }, args.result_dir + "/" + name + "_model.npy")

    save_data = {
        "train_loss": train_losses,
        "test_loss": test_losses,
        "test_acc": test_accs
    }
    json.dump(save_data, open(save_file, 'w'))
#!/usr/bin/env python
# coding: utf-8

from prepare_data import PrepareData
from model import LSTMClassifier
import pandas as pd
from sklearn.model_selection import train_test_split

ppd = PrepareData()
data = ppd.get_data()

lstm = LSTMClassifier()
X = lstm.get_matrix(data)
Y = pd.get_dummies(data['label']).values
X_train, X_test, Y_train, Y_test = train_test_split(X,
                                                    Y,
                                                    test_size=0.33,
                                                    random_state=42)
print(X_train.shape, Y_train.shape)
print(X_test.shape, Y_test.shape)

model = lstm.get_model(X.shape[1])
history = lstm.fit_model(model, X_train, Y_train)

validation_size = 1500
X_validate = X_test[-validation_size:]
Y_validate = Y_test[-validation_size:]
X_test = X_test[:-validation_size]
Y_test = Y_test[:-validation_size]

score, acc = model.evaluate(X_test, Y_test, verbose=2, batch_size=batch_size)
Exemple #7
0
                          shuffle=True,
                          num_workers=0)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

#define hyperparameters
size_of_vocab = len(all_words)
embedding_dim = 20
num_hidden_nodes = 8
num_output_nodes = len(tags)
num_layers = 2
bidirection = True
dropout = 0.2

#instantiate the model
model = LSTMClassifier(12, 20, len(all_words), len(tags)).to(device)

#architecture
print(model)

#No. of trianable parameters
# def count_parameters(model):
#     return sum(p.numel() for p in model.parameters() if p.requires_grad)

# print(f'The model has {count_parameters(model):,} trainable parameters')

# Loss and optimizer
criterion = nn.BCELoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)

# Train the model
#Load data generators
train_data_loader = get_train_loader(cities=cities,
                                     labels=labels,
                                     batch_size=batch_size,
                                     shuffle=False,
                                     collate_fn=collate_fn,
                                     sampler=train_sampler)
valid_data_loader = get_train_loader(cities=cities,
                                     labels=labels,
                                     batch_size=batch_size,
                                     shuffle=False,
                                     collate_fn=collate_fn,
                                     sampler=valid_sampler)

#Initialize the model to train
model = LSTMClassifier(27, 10, 14)

# Loss and Optimizer
criterion = nn.NLLLoss()
learning_rate = 0.8
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

# train
losses = []

num_epochs = 10

# Train the Model
for epoch in range(num_epochs):
    print("##### epoch {:2d}".format(epoch + 1))
    for i, batch in enumerate(train_data_loader):
def main():

    os.chdir('./')
    global args, word2vec, batch_size, train_set_idx
    global weight_scale, phenotypedictinverse
    phenotypedict = dict({
        "Cancer": 11,
        "Heart": 4,
        "Lung": 5,
        "Neuro": 10,
        "Pain": 9,
        "Alcohol": 7,
        "Substance": 8,
        "Obesity": 1,
        "Disorders": 6,
        "Depression": 12
    })

    parser = argparse.ArgumentParser(
        description=__doc__,
        formatter_class=argparse.RawDescriptionHelpFormatter)
    #parser.add_argument('clean_summaries0209.csv', help="Source Input file", type=str)
    #parser.add_argument('word2vec_50d.txt', help="word2vec file", type=str)
    parser.add_argument('--padding',
                        help="padding around each text",
                        type=int,
                        default=4)
    parser.add_argument(
        '--max_note_len',
        help="Cut off all notes longer than this (0 = no cutoff).",
        type=int,
        default=0)
    parser.add_argument('--filename',
                        help="File name for output file",
                        type=str,
                        default="data.h5")
    parser.add_argument('-predict_label',
                        type=int,
                        default=phenotypedict["Depression"],
                        help='Choose which type of phenotyping to detect')
    parser.add_argument('-topred',
                        type=str,
                        default="Depression",
                        help='Choose which type of phenotyping to detect')
    parser.add_argument('-epochs',
                        type=int,
                        default=10,
                        help='number of epochs for train [default: 10]')
    parser.add_argument('-batch_size',
                        type=int,
                        default=8,
                        help='batch size for training [default: 64]')
    parser.add_argument('-output_size',
                        type=int,
                        default=2,
                        help='final output dim [default: 2]')
    parser.add_argument('-hidden_size',
                        type=int,
                        default=256,
                        help='output dim of the cell [default: 256]')
    parser.add_argument('-embedding_length',
                        type=int,
                        default=50,
                        help='number of embedding dimension [default: 50]')
    parser.add_argument('-learning_rate',
                        type=float,
                        default=0.005,
                        help='initial learning rate [default: 0.5]')
    parser.add_argument('-vocab_size',
                        type=float,
                        default=48849,
                        help='initial learning rate [default: 0.5]')
    parser.add_argument(
        '-optimizer',
        type=str,
        default='Adam',
        help='optimizer for the gradient descent: Adadelta, Adam')
    parser.add_argument('-cuda', type=int, default=-1, help='CUUUUUUUUUUUUDA')
    parser.add_argument('-debug',
                        type=int,
                        default=0,
                        help='debug mode to print')
    parser.add_argument('-l2s', type=float, default=3, help='l2 norm')
    #    with open("conditions.dict", 'w') as f:
    #        for i, c in enumerate(conditions):
    #            print (f, i + 1, c)

    args = parser.parse_args()

    phenotypedictinverse = dict({
        11: "Cancer",
        4: "Heart",
        5: "Lung",
        10: "Neuro",
        9: "Pain",
        7: "Alcohol",
        8: "Substance",
        1: "Obesity",
        6: "Disorders",
        12: "Depression"
    })
    phenotypedictsamples = dict({
        "Cancer": 161,
        "Heart": 275,
        "Lung": 167,
        "Neuro": 368,
        "Pain": 321,
        "Alcohol": 196,
        "Substance": 155,
        "Obesity": 126,
        "Disorders": 295,
        "Depression": 460
    })

    weight_scale = [
        1 / (1610 -
             phenotypedictsamples[phenotypedictinverse[args.predict_label]]),
        1 / phenotypedictsamples[phenotypedictinverse[args.predict_label]]
    ]
    #weight_scale = [ phenotypedictsamples[phenotypedictinverse[args.predict_label]]/1610*10, (1610 - phenotypedictsamples[phenotypedictinverse[args.predict_label]])/1610*10]
    if args.cuda > -1:
        weight_scale = torch.FloatTensor(weight_scale).cuda()

    print('Weight Scale is: ', weight_scale)
    # LOAD THE WORD2VEC FILE
    word2vec, emb_size, v_large = load_bin_vec(
        "word2vec_50d.txt")  # word2vec whole dataset(label+unlabeled)   470260
    print('WORD2VEC POINTS:', v_large)

    # first step
    #    lbl, targets, ids, subj, time, embed = preprocess(args, emb_size, word2vec)

    #    lbl_train, lbl_train_target, lbl_test, lbl_test_target, phenotypedict = cross_validation(lbl, targets, ids, subj, time, args.topred, phenotypedict, phenotypedictsamples)

    fold = 1

    # put data of  each fold in to a .h5py file
    '''
    for i in range(0,fold):  
         with h5py.File('data_biased_'+args.topred+'_cv{0}_occ'.format(i+1) + '0'+'.h5',"w") as f:
             xtrain = np.array(lbl_train[i], dtype=int)
             xtraintarget = np.array(lbl_train_target[i], dtype=int)
             xtest = np.array(lbl_test[i], dtype=int)
             xtesttarget = np.array(lbl_test_target[i], dtype=int)
             f["w2v"] = np.array(embed)
             f['train'] = xtrain
             f['train_label'] = xtraintarget[:,phenotypedict[args.topred]]
             f['test'] = xtest
             f['test_label'] = xtesttarget[:,phenotypedict[args.topred]]    
    '''
    if args.cuda > -1:
        torch.cuda.set_device(args.cuda)
        torch.backends.cudnn.benchmark = True
    for i in range(0, fold):

        train, test, y_test, w2v = readh5todata(
            args, 'data_biased_' + phenotypedictinverse[args.predict_label] +
            '_cv{0}'.format(i + 1) + '_occ' + '0' + '.h5')
        args.w2v = w2v
        train_loader = torch.utils.data.DataLoader(train,
                                                   batch_size=args.batch_size,
                                                   sampler=None,
                                                   shuffle=False)
        test_loader = torch.utils.data.DataLoader(test,
                                                  batch_size=args.batch_size,
                                                  sampler=None,
                                                  shuffle=False)
        LSTM = LSTMClassifier(args)
        print(LSTM)
        train_model(args, LSTM, args.learning_rate, args.batch_size,
                    args.epochs, train_loader)
Exemple #10
0
class Trainer:
    def __init__(self,
                 config,
                 n_gpu,
                 vocab,
                 train_loader=None,
                 val_loader=None):
        self.config = config
        self.vocab = vocab
        self.n_gpu = n_gpu
        self.train_loader = train_loader
        self.val_loader = val_loader

        # Build model
        vocab_size = self.vocab.vocab_size()

        self.model = LSTMClassifier(self.config, vocab_size,
                                    self.config.n_label)
        self.model.to(device)

        if self.n_gpu > 1:
            self.model = nn.DataParallel(self.model)

        # Build optimizer
        self.optimizer = optim.Adam(self.model.parameters(), lr=self.config.lr)

        # Build criterion
        self.criterion = nn.CrossEntropyLoss()

    def train(self):
        best_f1 = 0.0
        best_acc = 0.0
        global_step = 0
        batch_f1 = []
        batch_acc = []
        for epoch in range(self.config.num_epoch):
            batch_loss = []
            for step, batch in enumerate(self.train_loader):
                self.model.train()
                batch = tuple(t.to(device) for t in batch)
                batch = sort_batch(batch)
                input_ids, input_lengths, labels = batch

                outputs = self.model(input_ids, input_lengths)
                loss = self.criterion(
                    outputs['logits'].view(-1, self.config.n_label),
                    labels.view(-1))

                f1, acc = ic_metric(labels.cpu(),
                                    outputs['predicted_intents'].cpu())

                if self.n_gpu > 1:
                    loss = loss.mean()

                loss.backward()
                self.optimizer.step()
                self.optimizer.zero_grad()

                global_step += 1
                batch_loss.append(loss.float().item())
                batch_f1.append(f1)
                batch_acc.append(acc)

                if (global_step
                        == 1) or (global_step % self.config.log_interval == 0):
                    mean_loss = np.mean(batch_loss)
                    mean_f1 = np.mean(batch_f1)
                    mean_acc = np.mean(batch_acc)
                    batch_loss = []
                    nsml.report(summary=True,
                                scope=locals(),
                                epoch=epoch,
                                train_loss=mean_loss,
                                step=global_step)

                if (global_step > 0) and (global_step %
                                          self.config.val_interval == 0):
                    val_loss, val_f1, val_acc = self.evaluation()
                    nsml.report(summary=True,
                                scope=locals(),
                                epoch=epoch,
                                val_loss=val_loss,
                                val_f1=val_f1,
                                val_acc=val_acc,
                                step=global_step)

                    if val_f1 > best_f1:
                        best_f1 = val_f1
                        best_acc = val_acc
                        nsml.save(global_step)

    def evaluation(self):
        self.model.eval()
        total_loss = []
        preds = []
        targets = []
        with torch.no_grad():
            for step, batch in enumerate(self.val_loader):
                batch = tuple(t.to(device) for t in batch)
                batch = sort_batch(batch)
                input_ids, input_lengths, labels = batch

                outputs = self.model(input_ids, input_lengths)
                loss = self.criterion(
                    outputs['logits'].view(-1, self.config.n_label),
                    labels.view(-1))

                pred = outputs['predicted_intents'].squeeze(
                    -1).cpu().numpy().tolist()
                target = labels.cpu().numpy().tolist()

                preds.extend(pred)
                targets.extend(target)
                total_loss.append(loss.float().item())

        mean_loss = np.mean(total_loss)
        mean_f1, mean_acc = ic_metric(targets, preds)
        return mean_loss, mean_f1, mean_acc
Exemple #11
0
def main():
    parser = argparse.ArgumentParser("Script to train model on a GPU")
    parser.add_argument(
        "--checkpoint",
        type=str,
        default=None,
        help=
        "Optional path to saved model, if none provided, the model is trained from scratch."
    )
    parser.add_argument("--n_epochs",
                        type=int,
                        default=5,
                        help="Number of training epochs.")
    args = parser.parse_args()

    sampling_rate = 125
    n_velocity_bins = 32
    seq_length = 1024
    n_tokens = 256 + sampling_rate + n_velocity_bins
    #early_stopping = 100000   # very high value to basically turn it off
    early_stopping = 200  # regular value
    # transformer = MusicTransformer(n_tokens, seq_length,
    #         d_model = 64, n_heads = 8, d_feedforward=256,
    #         depth = 4, positional_encoding=True, relative_pos=True, xavier_init=True)
    # set xavier_init = True to run xavier_init optimization
    # transformer = LongMusicTransformer(n_tokens, seq_length,
    #  d_model=64, n_heads=8, d_feedforward=256,
    #  depth=4, positional_encoding=True, relative_pos=False,
    #  xavier_init=True)
    transformer = LSTMClassifier(input_dim=1,
                                 hidden_dim=413,
                                 label_size=413,
                                 n_tokens=n_tokens,
                                 xavier_init=True)
    if args.checkpoint is not None:
        state = torch.load(args.checkpoint)
        transformer.load_state_dict(state)
        print(f"Successfully loaded checkpoint at {args.checkpoint}")
    #rule of thumb: 1 minute is roughly 2k tokens

    pipeline = PreprocessingPipeline(input_dir="data",
                                     stretch_factors=[0.975, 1, 1.025],
                                     split_size=30,
                                     sampling_rate=sampling_rate,
                                     n_velocity_bins=n_velocity_bins,
                                     transpositions=range(-2, 3),
                                     training_val_split=0.9,
                                     max_encoded_length=seq_length + 1,
                                     min_encoded_length=257)
    pipeline_start = time.time()
    pipeline.run()
    runtime = time.time() - pipeline_start
    print(f"MIDI pipeline runtime: {runtime / 60 : .1f}m")

    today = datetime.date.today().strftime('%m%d%Y')
    t = str(time.time())
    # checkpoint = f"saved_models/tf_{today}_{t}"
    checkpoint = f"saved_models/tf_lstm_both"
    training_sequences = pipeline.encoded_sequences['training']
    validation_sequences = pipeline.encoded_sequences['validation']

    batch_size = 16

    train(transformer,
          training_sequences,
          validation_sequences,
          epochs=args.n_epochs,
          evaluate_per=1,
          batch_size=batch_size,
          batches_per_print=100,
          padding_index=0,
          checkpoint_path=checkpoint,
          early_stopping_value=early_stopping)
Exemple #12
0
                        help='number of layers (default: 2)')

    # args holds all passed-in arguments
    args = parser.parse_args()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("Using device {}.".format(device))

    torch.manual_seed(args.seed)

    # Load the training data.
    train_loader = _get_train_data_loader(args.batch_size, args.data_dir)

    # To get params from the parser, call args.argument_name, ex. args.epochs or ards.hidden_dim
    # Don't forget to move your model .to(device) to move to GPU , if appropriate
    model = LSTMClassifier(args.input_dim, args.hidden_dim, args.num_layers,
                           args.output_dim).to(device)

    ## TODO: Define an optimizer and loss function for training
    optimizer = optim.Adam(model.parameters())
    criterion = torch.nn.MSELoss()

    # Trains the model (given line of code, which calls the above training function)

    # Keep the keys of this dictionary as they are
    model_info_path = os.path.join(args.model_dir, 'model_info.pth')
    with open(model_info_path, 'wb') as f:
        model_info = {
            'num_layers': args.num_layers,
            'hidden_dim': args.hidden_dim,
            'output_dim': args.output_dim,
            'input_dim': args.input_dim,
Exemple #13
0
if not os.path.exists(save_root):
    os.makedirs(save_root)
#print('writing results to '+save_root)



# create data generators
generator_train = get_batch_transform(model, train_data)
generator_val = get_batch_transform(model, val_data)
generator_test = get_batch_transform(model, test_data)

# train a predictor model
if exp_model == 'LR':
    model_snt = LRClassifier()
elif exp_model == 'LSTM':
    model_snt = LSTMClassifier()
else:
    raise NotImplementedError
if args.cuda:
    model_snt.cuda()

iters_max = 4000
lr_base = 0.001
lr_final = 0.00005
lr_new = lr_base
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(model_snt.parameters(), lr=lr_base)

iters_val = []
accus_val = []
loss_val = []
Exemple #14
0
def test(args):
    dataset_test = FirmaData_select_subjects(args.data_dir, 30, args.subset_par[0], args.subset_par[1], args.subset_par[2],args.subjects_list,
                                          subset='test', pre_process=False)
    dat_loader_test = DataLoader(dataset_test, batch_size=args.batch_size, shuffle=True)
    if args.test_all:
        for loadid in range(args.num_epochs):
            saved_model = os.path.join(args.save_path, 'model_' + str(loadid) + '.tar')
            checkpoint = torch.load(saved_model)

            model = LSTMClassifier(dataset_test[0][0].shape[1], args.hidden_dim, output_size=3)
            model.cuda()
            model.load_state_dict(checkpoint['model_state_dict'])
            acc,f1,_= evaluate_test_set(model, dat_loader_test)
            print('model {} test_accuracy:{:5.4f}, f1_score:{:5.4f}'.format(loadid,acc,f1))
    else:
        loadid=args.test_id
        saved_model = os.path.join(args.save_path, 'model_' + str(loadid) + '.tar')
        checkpoint = torch.load(saved_model)
        model = LSTMClassifier(dataset_test[0][0].shape[1], args.hidden_dim, output_size=3)
        model.cuda()
        model.load_state_dict(checkpoint['model_state_dict'])
        acc,f1, _ = evaluate_test_set(model, dat_loader_test)
        print('model {} test_accuracy:{:5.4f}, f1_score:{:5.4f}'.format(loadid,acc,f1))
Exemple #15
0
    parser.add_argument('--model-dir', type=str, default=os.environ['SM_MODEL_DIR'])
    parser.add_argument('--data-dir', type=str, default=os.environ['SM_CHANNEL_TRAINING'])
    parser.add_argument('--num-gpus', type=int, default=os.environ['SM_NUM_GPUS'])

    args = parser.parse_args()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("Using device {}.".format(device))

    torch.manual_seed(args.seed)

    # Load the training data.
    train_loader = _get_train_data_loader(args.batch_size, args.data_dir)

    # Build the model.
    model = LSTMClassifier(args.embedding_dim, args.hidden_dim, args.vocab_size).to(device)

    with open(os.path.join(args.data_dir, "word_dict.pkl"), "rb") as f:
        model.word_dict = pickle.load(f)

    print("Model loaded with embedding_dim {}, hidden_dim {}, vocab_size {}.".format(
        args.embedding_dim, args.hidden_dim, args.vocab_size
    ))

    # Train the model.
    optimizer = optim.Adam(model.parameters())
    loss_fn = torch.nn.BCELoss()

    train(model, train_loader, args.epochs, optimizer, loss_fn, device)

    # Save the parameters used to construct the model
Exemple #16
0
def train(model, train_loader, epochs, optimizer, loss_fn, device):
    """
    This is the training method that is called by the PyTorch training script. The parameters
    passed are as follows:
    model        - The PyTorch model that we wish to train.
    train_loader - The PyTorch DataLoader that should be used during training.
    epochs       - The total number of epochs to train for.
    optimizer    - The optimizer to use during training.
    loss_fn      - The loss function used for training.
    device       - Where the model and data should be loaded (gpu or cpu).
    """
    
    # TODO: Paste the train() method developed in the notebook here.
    def train(model, train_loader, epochs, optimizer, loss_fn, device):
    for epoch in range(1, epochs + 1):
        model.train()
        total_loss = 0
        for batch in train_loader:         
            batch_X, batch_y = batch
            
            batch_X = batch_X.to(device)
            batch_y = batch_y.to(device)
            
            # TODO: Complete this train method to train the model provided.
            optimizer.zero_grad()
            out = model.forward(batch_X)
            loss = loss_fn(out, batch_y)
            loss.backward()
            optimizer.step()
            
            total_loss += loss.data.item()
        print("Epoch: {}, BCELoss: {}".format(epoch, total_loss / len(train_loader)))
    pass


if __name__ == '__main__':
    # All of the model parameters and training parameters are sent as arguments when the script
    # is executed. Here we set up an argument parser to easily access the parameters.

    parser = argparse.ArgumentParser()

    # Training Parameters
    parser.add_argument('--batch-size', type=int, default=512, metavar='N',
                        help='input batch size for training (default: 512)')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')

    # Model Parameters
    parser.add_argument('--embedding_dim', type=int, default=32, metavar='N',
                        help='size of the word embeddings (default: 32)')
    parser.add_argument('--hidden_dim', type=int, default=100, metavar='N',
                        help='size of the hidden dimension (default: 100)')
    parser.add_argument('--vocab_size', type=int, default=5000, metavar='N',
                        help='size of the vocabulary (default: 5000)')

    # SageMaker Parameters
    parser.add_argument('--hosts', type=list, default=json.loads(os.environ['SM_HOSTS']))
    parser.add_argument('--current-host', type=str, default=os.environ['SM_CURRENT_HOST'])
    parser.add_argument('--model-dir', type=str, default=os.environ['SM_MODEL_DIR'])
    parser.add_argument('--data-dir', type=str, default=os.environ['SM_CHANNEL_TRAINING'])
    parser.add_argument('--num-gpus', type=int, default=os.environ['SM_NUM_GPUS'])

    args = parser.parse_args()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("Using device {}.".format(device))

    torch.manual_seed(args.seed)

    # Load the training data.
    train_loader = _get_train_data_loader(args.batch_size, args.data_dir)

    # Build the model.
    model = LSTMClassifier(args.embedding_dim, args.hidden_dim, args.vocab_size).to(device)

    with open(os.path.join(args.data_dir, "word_dict.pkl"), "rb") as f:
        model.word_dict = pickle.load(f)

    print("Model loaded with embedding_dim {}, hidden_dim {}, vocab_size {}.".format(
        args.embedding_dim, args.hidden_dim, args.vocab_size
    ))

    # Train the model.
    optimizer = optim.Adam(model.parameters())
    loss_fn = torch.nn.BCELoss()

    train(model, train_loader, args.epochs, optimizer, loss_fn, device)

    # Save the parameters used to construct the model
    model_info_path = os.path.join(args.model_dir, 'model_info.pth')
    with open(model_info_path, 'wb') as f:
        model_info = {
            'embedding_dim': args.embedding_dim,
            'hidden_dim': args.hidden_dim,
            'vocab_size': args.vocab_size,
        }
        torch.save(model_info, f)

	# Save the word_dict
    word_dict_path = os.path.join(args.model_dir, 'word_dict.pkl')
    with open(word_dict_path, 'wb') as f:
        pickle.dump(model.word_dict, f)

	# Save the model parameters
    model_path = os.path.join(args.model_dir, 'model.pth')
    with open(model_path, 'wb') as f:
        torch.save(model.cpu().state_dict(), f)