Exemple #1
0
def main(args):
    datamodule = LanguageDataModule(root=args.dataset_path,
                                    languages=args.languages,
                                    batch_size=args.batch_size,
                                    num_workers=args.num_workers)

    model = LanguageModel(
        # layers=14,#10
        #  blocks=1,#4
        skip_channels=32,  #256 
        end_channels=32,  #256
        # uncomment for fast debug network
    )

    ckpt = torch.load(args.ckpt_path)
    model.load_state_dict(ckpt['state_dict'])

    trainer = pl.Trainer(

        # comment to run on cpu for local testing
        gpus=args.gpus,
        auto_select_gpus=True,
        # distributed_backend='ddp',
        benchmark=True,
        ## -------
        terminate_on_nan=True,
    )
    datamodule.setup()

    # trainer.fit(model, datamodule)

    results = trainer.test(model, datamodule.test_dataloader())
Exemple #2
0
def model_load(path, model=None, optimizer=None):
    config = LMConfig(os.path.join(path, 'config.json'))
    if model is None:
        model_to_load = LanguageModel(config)
    else:
        model_to_load = get_model(model)
        model_to_load.__init__(config)
    model_state_dict = torch.load(open(os.path.join(path, 'model.pt'), 'rb'),
                                  map_location=lambda s, l: s)
    model_to_load.load_state_dict(model_state_dict)
    if optimizer:
        optimizer_state_dict = torch.load(open(
            os.path.join(path, 'optimizer.pt'), 'rb'),
                                          map_location=lambda s, l: s)
        optimizer.load_state_dict(optimizer_state_dict)
    return model_to_load
Exemple #3
0
def freestyle(loc):  # TODO

    # load data
    model_dir = Path(loc)
    settings = pickle.load(open(model_dir / 'settings.pkl', 'rb'))
    print(settings)

    # settings
    cell = settings['cell']
    hidden_size = settings['hidden_size']
    token = settings['token']
    small = settings['small']
    how_many = 100

    # load the models
    vocab = generate.get_vocab(token, small)
    if token == 'word':
        emb = generate.get_embedding('word2vec')
        input_size = emb.vectors.shape[1]
        output_size = emb.vectors.shape[0]
    elif token == 'character':
        emb = None
        input_size = vocab.size
        output_size = vocab.size
    fnames = os.listdir(model_dir / 'checkpoints')
    fname = fnames[-1]

    # load the model
    model = LanguageModel(cell, input_size, hidden_size, output_size)
    model.load_state_dict(torch.load(model_dir / 'checkpoints' / fname))
    model.eval()

    # monitor
    sents = [
        'The Standard ', 'non-abelian', 'silicon pixel detector',
        'estimate the', '[23] ATLAS'
    ]
    temperatures = [0.01 + 0.1 * i for i in range(11)]
    eval_stream = model_dir / 'evaluate_stream.txt'

    for temperature in temperatures:
        txt = '\nTemperature = {}'.format(temperature)
        utils.report(txt, eval_stream)
        for sent in sents:
            txt = generate.compose(model, vocab, emb, sent, temperature,
                                   how_many)
            utils.report(txt, eval_stream)
Exemple #4
0
def plot_switch_prob(loc):

    # load settings
    model_dir = Path(loc)
    settings = pickle.load(open(model_dir / 'settings.pkl', 'rb'))
    cell = settings['cell']
    hidden_size = settings['hidden_size']
    token = settings['token']
    small = settings['small']
    max_len = settings['max_len']

    # load the final model
    vocab = generate.get_vocab(token, small)
    if token == 'word':
        emb = generate.get_embedding('word2vec')
        input_size = emb.vectors.shape[1]
        output_size = emb.vectors.shape[0]
    elif token == 'character':
        emb = None
        input_size = vocab.size
        output_size = vocab.size

    fnames = os.listdir(model_dir / 'checkpoints')
    fname = fnames[-1]

    # load the model
    model = LanguageModel(cell, input_size, hidden_size, output_size)
    model.load_state_dict(torch.load(model_dir / 'checkpoints' / fname))
    model.eval()

    # prepare the base and replacement batch
    N = 100
    gen = generate.generate('valid',
                            token=token,
                            max_len=max_len,
                            small=small,
                            batch_size=N)
    base_batch, _ = next(gen)
    repl_batch, _ = next(gen)

    # compute the average KL divs over the batch
    depths = [i for i in range(max_len)]
    switch_probs = [
        compute_switch_prob(model, base_batch, repl_batch, keep_depth, vocab,
                            emb) for keep_depth in depths
    ]

    # make the plot
    fig, ax = plt.subplots()
    ax.plot(depths, switch_probs, 'tomato')
    ax.plot(depths, [0.01] * len(depths), 'k')
    ax.set_yscale('log')
    ax.set_ylim(0.001, 1)
    ax.set_xlim(0, max_len)
    ax.set_title('Probability of switching predicted character\n{}'.format(
        model_dir.name),
                 fontsize=7)
    ax.set_xlabel('sequence keep-depth')
    ax.set_ylabel('Probabillity')
    ax.grid()
    plt.savefig(model_dir / 'SwitchProbability.pdf')
Exemple #5
0
def plot_losses(loc):

    # load data
    model_dir = Path(loc)
    settings = pickle.load(open(model_dir / 'settings.pkl', 'rb'))

    # settings
    cell = settings['cell']
    hidden_size = settings['hidden_size']
    token = settings['token']
    small = settings['small']
    max_len = settings['max_len']
    n_epochs = settings['n_epochs']
    n_saves = settings['n_saves']
    criterion = nn.CrossEntropyLoss()

    # load the models
    models = []
    vocab = generate.get_vocab(token, small)
    if token == 'word':
        emb = generate.get_embedding('word2vec')
        input_size = emb.vectors.shape[1]
        output_size = emb.vectors.shape[0]
    elif token == 'character':
        emb = None
        input_size = vocab.size
        output_size = vocab.size

    for fname in os.listdir(model_dir / 'checkpoints'):
        model = LanguageModel(cell, input_size, hidden_size, output_size)
        model.load_state_dict(torch.load(model_dir / 'checkpoints' / fname))
        model.eval()
        models.append(model)

    # prepare training and validation sets
    N = 10000
    splits = ['train', 'valid']
    gens = {
        split: generate.generate(split,
                                 token=token,
                                 max_len=max_len,
                                 small=small,
                                 batch_size=N)
        for split in splits
    }
    batch, labels = {}, {}
    for split in splits:
        for b, l in gens[split]:

            # one hot encode
            if token == 'character':
                b = generate.one_hot_encode(b, vocab)
            # or embed
            elif token == 'word':
                b = generate.w2v_encode(b, emb, vocab)

            batch[split], labels[split] = torch.Tensor(b), torch.Tensor(
                l).long()
            break

    # evaluate the models
    loss = {split: [] for split in splits}
    acc = {split: [] for split in splits}
    for i, model in enumerate(models):
        t0 = time.time()
        print(i)
        for split in splits:
            # loss
            outputs = model(batch[split])
            l = criterion(outputs, labels[split])
            loss[split].append(float(l))
            # accuracy
            _, preds = torch.max(outputs, 1)
            a = sum(preds == labels[split]) / float(N)
            acc[split].append(float(a))
        print('{:2.2f}s'.format(time.time() - t0))

    for split in splits:
        with open(model_dir / 'best_{}_acc.txt'.format(split), 'w') as handle:
            best = max(acc[split])
            handle.write('{}\n'.format(best))

    # plot both quantities
    for quantity, description in zip([loss, acc], ['Loss', 'Accuracy']):
        fig, ax = plt.subplots()
        for split in splits:
            xs = (1 + np.arange(len(quantity[split]))) / n_saves
            ax.plot(xs, quantity[split], label=split)
        ax.set_xlabel('Training epoch')
        if n_epochs > 1:
            ax.set_xlabel('Epoch')
        ax.set_ylabel(description)
        upper = ax.get_ylim()[1] if description == 'Loss' else 1
        ax.set_ylim(0, upper)
        ax.set_xlim(0, ax.get_xlim()[1])
        ax.set_title(model_dir.name, fontsize=7)
        ax.legend()
        ax.grid(alpha=0.5, which='both')
        plt.savefig(model_dir / '{}.pdf'.format(description))