def eval_model(embedding = None, metamodel = None): model = metamodel if model is None: model = MetaModel(hyperparameters) if embedding is None: model.populate_with_nasnet_metacells() else: model.populate_from_embedding(embedding) model.build_model(dataset.images_shape) model.evaluate(dataset, 1, dir_path) model.save_metadata(dir_path) model.save_model(dir_path) model.generate_graph(dir_path) model.clear_model() tf.keras.backend.clear_session()
def test_model_accuracy_from_embedding(dir_name, embedding): dir_path = os.path.join(evo_dir, dir_name) # dataset = ImageDataset.get_cifar10_reduced() dataset = ImageDataset.get_cifar10() if not os.path.exists(dir_path): os.makedirs(dir_path) hyperparameters = Hyperparameters() model = MetaModel(hyperparameters) model.populate_from_embedding(embedding) model.build_model(dataset.images_shape) model.evaluate(dataset) model.save_model(dir_path) model.generate_graph(dir_path) model.save_metadata(dir_path) model.clear_model()