Exemple #1
0
def main():
    # import network architecture
    builder = ModelBuilder()
    model = builder.build_net(arch=TrainGlobalConfig.id,
                              num_input=TrainGlobalConfig.num_input,
                              num_classes=TrainGlobalConfig.num_classes,
                              num_branches=TrainGlobalConfig.num_branches,
                              padding_list=TrainGlobalConfig.padding_list,
                              dilation_list=TrainGlobalConfig.dilation_list)

    model = model.to(device)

    ch = torch.load(
        f"./result/{TrainGlobalConfig.base_dir}/last-checkpoint.bin")
    model.load_state_dict(fix_model_state_dict(ch["model_state_dict"]))

    valid_list = os.path.join(TrainGlobalConfig.root_path, "valid_0.txt")
    valid_dataset = BraTSDataset(
        list_file=valid_list,
        root=TrainGlobalConfig.root_path,
        phase="val",
    )

    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=1,
        shuffle=False,
        num_workers=TrainGlobalConfig.num_workers,
        pin_memory=True)
    test(valid_loader, model, TrainGlobalConfig)
Exemple #2
0
def main():
    # import network architecture
    builder = ModelBuilder()
    model = builder.build_net(arch=TrainGlobalConfig.id,
                              num_input=TrainGlobalConfig.num_input,
                              num_classes=TrainGlobalConfig.num_classes,
                              num_branches=TrainGlobalConfig.num_branches,
                              padding_list=TrainGlobalConfig.padding_list,
                              dilation_list=TrainGlobalConfig.dilation_list)

    model = model.to(device)

    optimizer = optim.RMSprop(model.parameters(),
                              TrainGlobalConfig.lr,
                              alpha=0.9,
                              eps=10**(-4),
                              weight_decay=1e-4,
                              momentum=0.6)
    criterion = nn.CrossEntropyLoss()

    train_list = os.path.join(TrainGlobalConfig.root_path, "train_0.txt")
    valid_list = os.path.join(TrainGlobalConfig.root_path, "valid_0.txt")

    train_dataset = BraTSDataset(list_file=train_list,
                                 root=TrainGlobalConfig.root_path,
                                 crop_size=TrainGlobalConfig.crop_size,
                                 num_input=TrainGlobalConfig.num_input)

    valid_dataset = BraTSDataset(list_file=valid_list,
                                 root=TrainGlobalConfig.root_path,
                                 crop_size=TrainGlobalConfig.crop_size,
                                 num_input=TrainGlobalConfig.num_input)

    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=TrainGlobalConfig.batch_size,
        shuffle=True,
        num_workers=TrainGlobalConfig.num_workers,
        pin_memory=True)

    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=TrainGlobalConfig.batch_size,
        shuffle=False,
        num_workers=TrainGlobalConfig.num_workers,
        pin_memory=True)

    trainer = PytorchTrainer(
        model=model,
        optimizer=optimizer,
        criterion=criterion,
        device=device,
        config=TrainGlobalConfig,
    )

    trainer.fit(train_loader, valid_loader)