def main(opt): device = torch.device(opt.device if torch.cuda.is_available() else "cpu") train_set = dataset.SBU_Dataset(opt, training=True) test_set = dataset.SBU_Dataset(opt, training=False) lens = train_set.__len__() iters_per_epoch = math.ceil(lens / opt.batch_size) max_epoch = math.ceil(opt.max_iter / iters_per_epoch) train_loader = DataLoader(train_set, batch_size=opt.batch_size, shuffle=True, num_workers=opt.job, pin_memory=True, collate_fn=dataset.collate_fn, drop_last=False) test_loader = DataLoader(test_set, batch_size=opt.batch_size, shuffle=True, num_workers=opt.job, pin_memory=True, collate_fn=dataset.collate_fn, drop_last=False) writer = SummaryWriter() print("loading the model.......") net = VRNN(opt) net.to(device) optimizer = torch.optim.Adam(net.parameters(), lr=opt.lr, betas=(0.9, 0.999)) best_loss = 10000 bar = tqdm(range(max_epoch)) for epoch in bar: bar.set_description('train epoch %06d' % epoch) train(train_loader, net, device, optimizer, writer, epoch) test_loss = test(test_loader, net, device, writer, epoch) if test_loss < best_loss: best_loss = test_loss save_model(net, optimizer,epoch) writer.close()
def train(conf): train_loader, test_loader = load_dataset(512) net = VRNN(conf.x_dim, conf.h_dim, conf.z_dim) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") torch.cuda.manual_seed_all(112858) net.to(device) net = torch.nn.DataParallel(net, device_ids=[0, 1]) if conf.restore == True: net.load_state_dict( torch.load(conf.checkpoint_path, map_location='cuda:0')) print('Restore model from ' + conf.checkpoint_path) optimizer = optim.Adam(net.parameters(), lr=0.001) for ep in range(1, conf.train_epoch + 1): prog = Progbar(target=117) print("At epoch:{}".format(str(ep))) for i, (data, target) in enumerate(train_loader): data = data.squeeze(1) data = (data / 255).to(device) package = net(data) loss = Loss(package, data) net.zero_grad() loss.backward() _ = torch.nn.utils.clip_grad_norm_(net.parameters(), 5) optimizer.step() prog.update(i, exact=[("Training Loss", loss.item())]) with torch.no_grad(): x_decoded = net.module.sampling(conf.x_dim, device) x_decoded = x_decoded.cpu().numpy() digit = x_decoded.reshape(conf.x_dim, conf.x_dim) plt.imshow(digit, cmap='Greys_r') plt.pause(1e-6) if ep % conf.save_every == 0: torch.save(net.state_dict(), '../checkpoint/Epoch_' + str(ep + 1) + '.pth')
def main(runsss, overlap, window_size, h_dim, z_dim, batch_size, language): try: def train(epoch): train_loss = 0 tq = tqdm(train_loader) for batch_idx, (data, _) in enumerate(tq): data = Variable(data.squeeze().transpose(0, 1)) data = (data - data.min().item()) / (data.max().item() - data.min().item()) #forward + backward + optimize optimizer.zero_grad() kld_loss, nll_loss, _, _ = model(data) loss = kld_loss + nll_loss loss.backward() optimizer.step() #grad norm clipping, only in pytorch version >= 1.10 nn.utils.clip_grad_norm(model.parameters(), clip) tq.set_postfix(kld_loss=(kld_loss.item() / batch_size), nll_loss=(nll_loss.item() / batch_size)) train_loss += loss.item() return def test(epoch): """uses test data to evaluate likelihood of the model""" mean_kld_loss, mean_nll_loss = 0, 0 tq = tqdm(test_loader) for i, (data, _) in enumerate(tq): #data = Variable(data) data = Variable(data.squeeze().transpose(0, 1)) data = (data - data.min().item()) / (data.max().item() - data.min().item()) kld_loss, nll_loss, _, _ = model(data) mean_kld_loss += kld_loss.item() mean_nll_loss += nll_loss.item() mean_kld_loss /= len(test_loader.dataset) mean_nll_loss /= len(test_loader.dataset) print('====> Test set loss: KLD Loss = {:.4f}, NLL Loss = {:.4f} '. format(mean_kld_loss, mean_nll_loss)) return def train_classifier(param_string, train_loader_enc, test_loader_enc, optimizer2, classify, criterion): num_epochs = 100 best = 0 acc = [] train_acc = [] for epoch in range(num_epochs): print(f'epoch num: {epoch}\n') running_loss = 0.0 tq = tqdm(train_loader_enc) for i, (data, labels) in enumerate(tq): # zero the parameter gradients optimizer2.zero_grad() # forward + backward + optimize outputs = classify(data) # print(outputs, labels) loss = criterion(outputs.float(), labels.long()) loss.backward() optimizer2.step() # print statistics running_loss += loss.item() tq.set_postfix(running_loss=(running_loss)) acc.append( test_classifier(train_loader_enc, test_loader_enc, classify, flag=False, param_string=param_string)) train_acc.append( test_classifier(train_loader_enc, test_loader_enc, classify, flag=True, param_string=param_string)) print(acc[-1], best) if acc[-1] > best: best = acc[-1] print(f'best acc of {best}') f = open('class_acc.txt', 'a+') for i in range(len(train_acc)): f.write(param_string) f.write(f'{i},{train_acc[i]},{acc[i]}\n') f.close() return max([*acc, *train_acc]) def test_classifier(train_loader_enc, test_loader_enc, classify, flag=False, param_string=""): # evaluate correct = 0 total = 0 classes = defaultdict(int) wrong = defaultdict(int) y_pred = [] y_true = [] with torch.no_grad(): if flag: tq = tqdm(train_loader_enc) for data in tq: dat, labels = data outputs = classify(dat) for i in range(len(outputs)): if outputs[i][0] >= outputs[i][1]: pred = 0 else: pred = 1 y_pred.append(pred) y_true.append(labels[i].item()) if pred == labels[i].item(): correct += 1 classes[pred] += 1 else: wrong[pred] += 1 total += 1 else: tq = tqdm(test_loader_enc) for data in tq: dat, labels = data outputs = classify(dat) for i in range(len(outputs)): if outputs[i][0] >= outputs[i][1]: pred = 0 else: pred = 1 y_pred.append(pred) y_true.append(labels[i].item()) if pred == labels[i].item(): correct += 1 classes[pred] += 1 else: wrong[pred] += 1 total += 1 f11 = f1_score(y_true, y_pred, average='binary') [precision, recall, fbeta_score, support] = precision_recall_fscore_support(y_true, y_pred, average='binary') paramms = f'correct: {correct}, total: {total}, classes: {classes}, wrong: {wrong}, f1_score: {f11}, precision: {precision}, recall: {recall}, fbeta_score: {fbeta_score}, support: {support}' print(paramms) print(f'accuracy: {correct/total}') if param_string: f = open('class_acc.txt', 'a+') f.write(param_string) f.write(f'y_pred-{y_pred},y_true-{y_true}\n') f.write(f'{paramms}\n') f.close() acc = correct / total return acc # transform inputs from test set to encoded vectors, make new training training loaders def transform_inputs(loader, batch_size=batch_size): encoded_inputs = [] labels = [] tq = tqdm(loader) with torch.no_grad(): for batch_idx, (data, label) in enumerate(tq): data = Variable(data.squeeze().transpose(0, 1)) data = (data - data.min().item()) / (data.max().item() - data.min().item()) h = model.predict(data) for i in range(h.shape[1]): encoded_inputs.append(h[:, i, :].flatten().numpy()) labels.append(label[i].item()) return torch.utils.data.DataLoader(torch.utils.data.TensorDataset( torch.Tensor(encoded_inputs), torch.Tensor(labels)), batch_size=batch_size, shuffle=True) def run_classifier(epochh, fn): for b_size in [4, 8, 16, 32]: train_loader_enc = transform_inputs(train_loader, b_size) test_loader_enc = transform_inputs(test_loader, b_size) for intermediate_dim in [5, 10, 20, 40]: for layers in [True, False]: f = open(txt_file, 'a+') f.write( f'fn="{fn}",runsss={runsss},epochh={epochh},overlap={overlap},window_size={window_size},h_dim={h_dim},z_dim={z_dim},batch_size={batch_size},language={language},b_size={b_size},intermediate_dim={intermediate_dim},layers={layers}\n' ) f.close() classify = Classifier(input_dim=h_dim, intermediate_dim=20, layers=layers) print(classify, classify.count_parameters()) criterion = nn.CrossEntropyLoss() optimizer2 = torch.optim.Adam(classify.parameters(), lr=0.001) train_classifier( f'fn="{fn}",runsss={runsss},epochh={epochh},overlap={overlap},window_size={window_size},h_dim={h_dim},z_dim={z_dim},batch_size={batch_size},language={language},b_size={b_size},intermediate_dim={intermediate_dim},layers={layers}\n', train_loader_enc, test_loader_enc, optimizer2, classify, criterion) accuracy = test_classifier(train_loader_enc, test_loader_enc, classify, flag=False) print(f'final accuracy ---> {accuracy}') print('Finished Training') return x = get_dataset2(overlap=overlap, window_size=window_size, time_steps=20, language=language, max_len=(100 if language == "english" else 80)) #hyperparameters # x_dim = 70 x_dim = x['genuine'].shape[2] # h_dim = 100 # z_dim = 16 n_layers = 1 n_epochs = 25 clip = 10 learning_rate = 3e-4 batch_size = batch_size seed = 128 print_every = 10 save_every = 5 #manual seed torch.manual_seed(seed) #init model + optimizer + datasets x_i = [] y_i = [] x_it = [] y_it = [] test_count = defaultdict(int) tot = 80 for val in ['genuine', 'forged']: for i in x[val]: if val == 'genuine' and test_count['genuine'] < tot: x_it.append(i) y_it.append([1]) test_count['genuine'] += 1 elif val == 'forged' and test_count['forged'] < tot: x_it.append(i) y_it.append([0]) test_count['forged'] += 1 else: x_i.append(i) y_i.append([0] if val == 'genuine' else [1]) # print(len(x_i),len(y_i),len(x_it),len(y_it)) x_i, y_i, x_it, y_it = np.array(x_i), np.array(y_i).reshape( (-1, )), np.array(x_it), np.array(y_it).reshape((-1, )) if False: signatures_train, signatures_test, labels_train, labels_test = get_dataset( ) else: signatures_train, signatures_test, labels_train, labels_test = x_i, x_it, y_i, y_it print('input data\n', signatures_train.shape, labels_train.shape, signatures_test.shape, labels_test.shape) x_dim = signatures_train.shape[2] train_loader = torch.utils.data.DataLoader( torch.utils.data.TensorDataset(torch.Tensor(signatures_train), torch.Tensor(labels_train)), batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader( torch.utils.data.TensorDataset(torch.Tensor(signatures_test), torch.Tensor(labels_test)), batch_size=batch_size, shuffle=True) model = VRNN(x_dim, h_dim, z_dim, n_layers) optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) for epoch in range(1, n_epochs + 1): #training + testing train(epoch) test(epoch) #saving model if epoch % save_every == 1: fn = 'saves/vrnn_state_dict_' + f'{runsss},{overlap},{window_size},{h_dim},{z_dim},{batch_size}.{language},{epoch}' + '.pth' torch.save(model.state_dict(), fn) print('Saved model to ' + fn) run_classifier(epoch, fn + '\n') # freeze model weights for param in model.parameters(): param.requires_grad = False except: print('FAILED RUN') f = open(txt_file, 'a+') f.write( f'FAILED RUN ---> {runsss},{overlap},{window_size},{h_dim},{z_dim},{batch_size}.{language}\n' ) f.close()
save_every = 10 #manual seed torch.manual_seed(seed) plt.ion() #init model + optimizer + datasets train_loader = torch.utils.data.DataLoader(datasets.MNIST( 'data', train=True, download=True, transform=transforms.ToTensor()), batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(datasets.MNIST( 'data', train=False, transform=transforms.ToTensor()), batch_size=batch_size, shuffle=True) model = VRNN(x_dim, h_dim, z_dim, n_layers) optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) for epoch in range(1, n_epochs + 1): #training + testing train(epoch) test(epoch) #saving model if epoch % save_every == 1: fn = 'saves/vrnn_state_dict_' + str(epoch) + '.pth' torch.save(model.state_dict(), fn) print('Saved model to ' + fn)
def main(args): # Create model directory if not os.path.exists(args.model_path): os.makedirs(args.model_path) # Load vocabulary wrapper. with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Image preprocessing # For normalization, see https://github.com/pytorch/vision#models transform = transforms.Compose([ transforms.RandomCrop(args.crop_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) #val_loader = get_loader('./data/val_resized2014/', './data/annotations/captions_val2014.json', # vocab, transform, 1, False, 1) start_epoch = 0 encoder_state = args.encoder decoder_state = args.decoder # Build the models encoder = EncoderCNN(args.embed_size) if not args.train_encoder: encoder.eval() decoder = VRNN(args.embed_size, args.hidden_size, len(vocab), args.latent_size, args.num_layers) if args.restart: encoder_state, decoder_state = 'new', 'new' if encoder_state == '': encoder_state = 'new' if decoder_state == '': decoder_state = 'new' print("Using encoder: {}".format(encoder_state)) print("Using decoder: {}".format(decoder_state)) try: start_epoch = int(float(decoder_state.split('-')[1])) except: pass if encoder_state != 'new': encoder.load_state_dict(torch.load(encoder_state)) if decoder_state != 'new': decoder.load_state_dict(torch.load(decoder_state)) # Build data loader data_loader = get_loader(args.image_dir, args.caption_path, vocab, transform, args.batch_size, shuffle=True, num_workers=args.num_workers) """ Make logfile and log output """ with open(args.model_path + args.logfile, 'a+') as f: f.write("Using encoder: new\nUsing decoder: new\n\n") if torch.cuda.is_available(): encoder.cuda() decoder.cuda() # Optimizer cross_entropy = nn.CrossEntropyLoss() params = list(decoder.parameters()) + list( encoder.linear.parameters()) + list(encoder.bn.parameters()) optimizer = torch.optim.Adam(params, lr=args.learning_rate) batch_loss = [] batch_loss_det = [] batch_kl = [] batch_ml = [] batch_acc = [] # Train the Models total_step = len(data_loader) for epoch in range(start_epoch, args.num_epochs): for i, (images, captions, lengths, _, _) in enumerate(data_loader): # get lengths excluding <start> symbol lengths = [l - 1 for l in lengths] # Set mini-batch dataset images = to_var(images, volatile=True) captions = to_var(captions) # assuming following assertion assert min(lengths) > args.z_step + 2 # get targets from captions (excluding <start> tokens) #targets = pack_padded_sequence(captions[:,1:], lengths, batch_first=True)[0] targets_var = captions[:, args.z_step + 1] targets_det = pack_padded_sequence( captions[:, args.z_step + 2:], [l - args.z_step - 1 for l in lengths], batch_first=True)[0] # Get prior and approximate distributions decoder.zero_grad() encoder.zero_grad() features = encoder(images) prior, q_z, q_x, det_x = decoder(features, captions, lengths, z_step=args.z_step) # Calculate KL Divergence kl = torch.mean(kl_divergence(*q_z + prior)) # Get marginal likelihood from log likelihood of the correct symbol index = (torch.cuda.LongTensor(range(q_x.shape[0])), targets_var) ml = torch.mean(q_x[index]) # Get Cross-Entropy loss for deterministic decoder ce = cross_entropy(det_x, targets_det) elbo = ml - kl loss_var = -elbo loss_det = ce loss = loss_var + loss_det batch_loss.append(loss.data[0]) batch_loss_det.append(loss_det.data[0]) batch_kl.append(kl.data[0]) batch_ml.append(ml.data[0]) loss.backward() optimizer.step() # Print log info if i % args.log_step == 0: print( 'Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f' % (epoch, args.num_epochs, i, total_step, loss.data[0], np.exp(loss.data[0]))) with open(args.model_path + args.logfile, 'a') as f: f.write( 'Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f' % (epoch, args.num_epochs, i, total_step, loss.data[0], np.exp(loss.data[0]))) # Save the models if (i + 1) % args.save_step == 0: torch.save( decoder.state_dict(), os.path.join(args.model_path, 'decoder-%d-%d.pkl' % (epoch + 1, i + 1))) if args.train_encoder: torch.save( encoder.state_dict(), os.path.join(args.model_path, 'encoder-%d-%d.pkl' % (epoch + 1, i + 1))) with open(args.model_path + 'training_loss.pkl', 'w+') as f: pickle.dump(batch_loss, f) with open(args.model_path + 'training_val.pkl', 'w+') as f: pickle.dump(batch_acc, f) with open(args.model_path + args.logfile, 'a') as f: f.write("Training finished at {} .\n\n".format(str(datetime.now())))