def __init__(self, state_size, action_size, hidden_size, seed):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.hidden_size = hidden_size
        self.seed = random.seed(seed)

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size, hidden_size,
                                       seed).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size, hidden_size,
                                        seed).to(device)
        #self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)
        self.optimizer = optim.RMSprop(self.qnetwork_local.parameters(),
                                       lr=LR,
                                       momentum=0.95)
        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, hidden_size, seed):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.hidden_size = hidden_size
        self.seed = random.seed(seed)

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size, hidden_size,
                                       seed).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size, hidden_size,
                                        seed).to(device)
        #self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)
        self.optimizer = optim.RMSprop(self.qnetwork_local.parameters(),
                                       lr=LR,
                                       momentum=0.95)
        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > BATCH_SIZE:
                experiences, idxs, ws = self.memory.sample()
                self.learn(experiences, idxs, ws, GAMMA)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, idxs, ws, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences
        ## TODO: compute and minimize the loss
        next_action_values_local = self.qnetwork_local(states).gather(
            1, actions)
        # Only change proposed for Double DQN: Get maximizing future actions from local network and get their
        # corresponding values from target network. Compare then these to the local taken actions.
        local_max_actions = self.qnetwork_local(next_states).detach().max(
            1)[1].unsqueeze(1)
        next_action_values_target = self.qnetwork_target(
            next_states).detach().gather(1, local_max_actions)
        '''
        print(next_action_values_local.shape)
        print(next_action_values_local[0][:])
        print(next_action_values_local.gather(1, actions).shape)
        print(actions[0][0])
        print(next_action_values_local.gather(1, actions)[0][0])
        '''
        y = rewards + (gamma * next_action_values_target * (1 - dones))
        # Local network will be actualized, target one is used as ground truth
        ws = torch.from_numpy(ws.astype(float)).float().to(device)
        loss = F.mse_loss(ws * next_action_values_local, ws * y)
        errors = np.abs(y.cpu().data.numpy() -
                        next_action_values_local.cpu().data.numpy())
        self.memory.memory.update_batch(idxs, errors)

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        # ------------------- update target network ------------------- #
        # Copy from local to target network parameters
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)

    def adjust_learning_rate(self, episode, val):
        print("adjusting learning rate!")
        for param_group in self.optimizer.param_groups:
            param_group['lr'] = val
Exemple #3
0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, seed):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        # Q-Network
        hidden_layers = [128, 64]
        self.qnetwork_local = QNetwork(state_size, action_size, hidden_layers,
                                       seed).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size, hidden_layers,
                                        seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        ## TODO: compute and minimize the loss
        "*** YOUR CODE HERE ***"

        max_actions = self.qnetwork_local.forward(next_states).detach().max(
            1)[1].unsqueeze(1)
        output_target = self.qnetwork_target.forward(next_states).gather(
            1, max_actions)
        td_target = rewards + gamma * (output_target * (1 - dones))
        output_local = self.qnetwork_local(states).gather(1, actions)

        loss = F.mse_loss(output_local, td_target)

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)