# dataset_test = dset.ImageFolder(root=os.path.join(opt.dataset, opt.test_set), transform=transform_fwd)
    # assert dataset_test
    # dataloader_test = torch.utils.data.DataLoader(dataset_test, batch_size=opt.batchSize, shuffle=False, num_workers=int(opt.workers))
    # dataloaders = {}
    # for name in ['train', 'test']:
    #     raw_data = pandas.read_csv(os.path.join(opt.dataset, '%s.csv' % name))
    #     dataloaders[name] = DataLoader(FrameDataset(raw_data.to_numpy()), **config.dataset_params)
    raw_data = pandas.read_csv(os.path.join(opt.dataset, 'test.csv'))
    dataloader_test = DataLoader(FrameDataset(raw_data.to_numpy()),
                                 batch_size=opt.batchSize,
                                 shuffle=True,
                                 num_workers=4,
                                 pin_memory=False)
    vgg_ext = model_big.VggExtractor()
    capnet = model_big.CapsuleNet(2, opt.gpu_id)

    capnet.load_state_dict(torch.load(os.path.join(opt.outf)))
    capnet.eval()

    if opt.gpu_id >= 0:
        vgg_ext.cuda(opt.gpu_id)
        capnet.cuda(opt.gpu_id)

    ##################################################################################

    tol_label = np.array([], dtype=np.float)
    tol_pred = np.array([], dtype=np.float)
    tol_pred_prob = np.array([], dtype=np.float)

    count = 0
Exemple #2
0
    print(path)
    print('Number of files: %d' % (length))
    print('Number of videos: %d' % (count_vid))
    print('Number of correct classifications: %d' % (correct))

    return count_vid, correct


if __name__ == '__main__':
    path_real = os.path.join(opt.dataset, opt.real)
    path_deepfakes = os.path.join(opt.dataset, opt.deepfakes)
    path_face2face = os.path.join(opt.dataset, opt.face2face)
    path_faceswap = os.path.join(opt.dataset, opt.faceswap)

    vgg_ext = model_big.VggExtractor()
    model = model_big.CapsuleNet(4, opt.gpu_id)

    model.load_state_dict(
        torch.load(os.path.join(opt.outf, 'capsule_' + str(opt.id) + '.pt')))
    model.eval()

    if opt.gpu_id >= 0:
        vgg_ext.cuda(opt.gpu_id)
        model.cuda(opt.gpu_id)

    ###################################################################
    tol_count_vid_real = 0
    tol_correct_real = 0

    tol_count_vid_deepfakes = 0
    tol_correct_deepfakes = 0