cfg.AVD_ROOT_DIR,
        cfg.TEST_LIST,
        test_ids,
        max_difficulty=cfg.MAX_OBJ_DIFFICULTY,
        fraction_of_no_box=cfg.TEST_FRACTION_OF_NO_BOX_IMAGES)

    #create train/test loaders, with CUSTOM COLLATE function
    testloader = torch.utils.data.DataLoader(testset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=cfg.NUM_WORKERS,
                                             collate_fn=AVD.collate)

    # load net
    print('Loading ' + cfg.FULL_MODEL_LOAD_NAME + ' ...')
    net = TDID(cfg)
    load_net(cfg.FULL_MODEL_LOAD_DIR + cfg.FULL_MODEL_LOAD_NAME, net)
    net.features.eval()  #freeze batchnorms layers?
    print('load model successfully!')

    net.cuda()
    net.eval()

    # evaluation
    test_net(cfg.MODEL_BASE_SAVE_NAME,
             net,
             testloader,
             target_images,
             test_ids,
             cfg,
             max_dets_per_target=cfg.MAX_DETS_PER_TARGET,
                            max_difficulty=cfg.MAX_OBJ_DIFFICULTY,
                            fraction_of_no_box=cfg.FRACTION_OF_NO_BOX_IMAGES)
valset = get_AVD_dataset(cfg.AVD_ROOT_DIR,
                         cfg.VAL_LIST,
                         val_ids,
                         max_difficulty=cfg.MAX_OBJ_DIFFICULTY,
                         fraction_of_no_box=cfg.VAL_FRACTION_OF_NO_BOX_IMAGES)

trainloader = torch.utils.data.DataLoader(train_set,
                                          batch_size=cfg.BATCH_SIZE,
                                          shuffle=True,
                                          num_workers=cfg.NUM_WORKERS,
                                          collate_fn=AVD.collate)

print('Loading network...')
net = TDID(cfg)
if cfg.LOAD_FULL_MODEL:
    load_net(cfg.FULL_MODEL_LOAD_DIR + cfg.FULL_MODEL_LOAD_NAME, net)
else:
    weights_normal_init(net, dev=0.01)
    if cfg.USE_PRETRAINED_WEIGHTS:
        net.features = load_pretrained_weights(cfg.FEATURE_NET_NAME)
net.features.eval()  #freeze batchnorms layers?

if not os.path.exists(cfg.SNAPSHOT_SAVE_DIR):
    os.makedirs(cfg.SNAPSHOT_SAVE_DIR)
if not os.path.exists(cfg.META_SAVE_DIR):
    os.makedirs(cfg.META_SAVE_DIR)

#put net on gpu
net.cuda()
Exemple #3
0
    bbox = [int(data[1]), int(data[2]), int(data[3]), int(data[4]), 1]
    target1 = cv2.resize(pre_load_target_1, (80, 80),
                         interpolation=cv2.INTER_AREA)
    target2 = cv2.resize(pre_load_target_2, (80, 80),
                         interpolation=cv2.INTER_AREA)

    return image, bbox, target1, target2


# load config
cfg_file = "configAVD1"
cfg = importlib.import_module('configs.' + cfg_file)
cfg = cfg.get_config()

print('Loading network...')
net = TDID(cfg)
if cfg.LOAD_FULL_MODEL:
    load_net(cfg.FULL_MODEL_LOAD_DIR + cfg.FULL_MODEL_LOAD_NAME, net)
else:
    weights_normal_init(net, dev=0.01)
    if cfg.USE_PRETRAINED_WEIGHTS:
        net.features = load_pretrained_weights(cfg.FEATURE_NET_NAME)
net.features.eval()  #freeze batchnorms layers?

if not os.path.exists(cfg.SNAPSHOT_SAVE_DIR):
    os.makedirs(cfg.SNAPSHOT_SAVE_DIR)
if not os.path.exists(cfg.META_SAVE_DIR):
    os.makedirs(cfg.META_SAVE_DIR)

#put net on gpu
net.cuda()