Exemple #1
0
def livedemo():

    # dataset
    diVideoSet = {
        "sName": "chalearn",
        "nClasses": 20,  # number of classes
        "nFramesNorm": 40,  # number of frames per video
        "nMinDim": 240,  # smaller dimension of saved video-frames
        "tuShape": (240, 320),  # height, width
        "nFpsAvg": 10,
        "nFramesAvg": 50,
        "fDurationAvg": 5.0
    }  # seconds

    # files
    sClassFile = "data-set/%s/%03d/class.csv" % (diVideoSet["sName"],
                                                 diVideoSet["nClasses"])
    sVideoDir = "data-set/%s/%03d" % (diVideoSet["sName"],
                                      diVideoSet["nClasses"])

    print("\nStarting gesture recognition live demo ... ")
    print(os.getcwd())
    print(diVideoSet)

    # load label description
    oClasses = VideoClasses(sClassFile)

    sModelFile = "model/20180627-0729-chalearn020-oflow-i3d-entire-best.h5"
    h, w = 224, 224
    keI3D = I3D_load(sModelFile, diVideoSet["nFramesNorm"], (h, w, 2),
                     oClasses.nClasses)

    # open a pointer to the webcam video stream
    oStream = video_start(device=1,
                          tuResolution=(320, 240),
                          nFramePerSecond=diVideoSet["nFpsAvg"])

    #liVideosDebug = glob.glob(sVideoDir + "/train/*/*.*")
    nCount = 0
    sResults = ""
    timer = Timer()

    # loop over action states
    while True:
        # show live video and wait for key stroke
        key = video_show(oStream,
                         "green",
                         "Press <blank> to start",
                         sResults,
                         tuRectangle=(h, w))

        # start!
        if key == ord(' '):
            # countdown n sec
            video_show(oStream,
                       "orange",
                       "Recording starts in ",
                       tuRectangle=(h, w),
                       nCountdown=3)

            # record video for n sec
            fElapsed, arFrames, _ = video_capture(oStream, "red", "Recording ", \
             tuRectangle = (h, w), nTimeDuration = int(diVideoSet["fDurationAvg"]), bOpticalFlow = False)
            print("\nCaptured video: %.1f sec, %s, %.1f fps" % \
             (fElapsed, str(arFrames.shape), len(arFrames)/fElapsed))

            # show orange wait box
            frame_show(oStream,
                       "orange",
                       "Translating sign ...",
                       tuRectangle=(h, w))

            # crop and downsample frames
            arFrames = images_crop(arFrames, h, w)
            arFrames = frames_downsample(arFrames, diVideoSet["nFramesNorm"])

            # Translate frames to flows - these are already scaled between [-1.0, 1.0]
            print("Calculate optical flow on %d frames ..." % len(arFrames))
            timer.start()
            arFlows = frames2flows(arFrames, bThirdChannel=False, bShow=True)
            print("Optical flow per frame: %.3f" %
                  (timer.stop() / len(arFrames)))

            # predict video from flows
            print("Predict video with %s ..." % (keI3D.name))
            arX = np.expand_dims(arFlows, axis=0)
            arProbas = keI3D.predict(arX, verbose=1)[0]
            nLabel, sLabel, fProba = probability2label(arProbas,
                                                       oClasses,
                                                       nTop=3)

            sResults = "Sign: %s (%.0f%%)" % (sLabel, fProba * 100.)
            print(sResults)
            nCount += 1

        # quit
        elif key == ord('q'):
            break

    # do a bit of cleanup
    oStream.release()
    cv2.destroyAllWindows()

    return
from keras import backend as K
from model_i3d import I3D_load
from datagenerator import VideoClasses, FramesGenerator, generate_generator_multiple
from model_i3d import Inception_Inflated3d, add_i3d_top
import json

#==== model frame number
frames_num = 115

#==== model input type
#sModelFile = "model_flow_mirror/20200706-0517-tsl100-oflow-i3d-entire-best.h5"
#sModelFile = "model_rgb_mirror/20200711-0410-tsl100-115-oflow-i3d-entire-best.h5"
sModelFile = "model_combined_mirror/115_rgb.h5"
#==== model load
h, w = 224, 224
keI3D = I3D_load(sModelFile, frames_num, (h, w, 2), 63)
#keI3D = I3D_load(sModelFile, frames_num, (h, w, 3), 63)
#keI3D = I3D_load(sModelFile, frames_num, (h, w, 2), 63)
input_type = 'combined_test'

sFolder = "%03d-%d" % (100, frames_num)
sOflowDir = "data-temp/%s/%s/oflow" % ('tsl', sFolder)
sImageDir = "data-temp/%s/%s/image" % ('tsl', sFolder)

genFramesTest_flow = FramesGenerator(sOflowDir + "/test_videos",
                                     1,
                                     frames_num,
                                     224,
                                     224,
                                     2,
                                     bShuffle=False)
def livedemo():
    fDurationAvg = 3.0  # seconds

    # files
    sClassFile = "class_ISL.csv"

    print("\nStarting gesture recognition live demo ... ")
    # load label description
    oClasses = VideoClasses(sClassFile)

    sModelFile = "model/20190322-1841-ISL105-oflow-i3d-top-best.h5"

    h, w = 224, 224
    keI3D = I3D_load(sModelFile, 40, (h, w, 2), oClasses.nClasses)
    if (keI3D):
        print("Model loaded successfully")
    # open a pointer to the webcam video stream
    oStream = video_start(device=0,
                          tuResolution=(320, 240),
                          nFramePerSecond=10)

    nCount = 0
    sResults = ""
    timer = Timer()

    # loop over action states
    while True:
        # show live video and wait for key stroke
        key = video_show(oStream,
                         "green",
                         "Press key to start",
                         sResults,
                         tuRectangle=(h, w))

        # start!
        if (key == ord('3') or key == ord('5')):
            # countdown n sec
            video_show(oStream,
                       "orange",
                       "Recording starts in ",
                       tuRectangle=(h, w),
                       nCountdown=3)

            # record video for n sec
            if key == ord('3'):
                fDurationAvg = 3
                fElapsed, arFrames, _ = video_capture(
                    oStream,
                    "red",
                    "Recording ",
                    tuRectangle=(h, w),
                    nTimeDuration=int(fDurationAvg),
                    bOpticalFlow=False)
            else:
                fDurationAvg = 5
                fElapsed, arFrames, _ = video_capture(
                    oStream,
                    "red",
                    "Recording ",
                    tuRectangle=(h, w),
                    nTimeDuration=int(fDurationAvg),
                    bOpticalFlow=False)
            print("\nCaptured video: %.1f sec, %s, %.1f fps" %
                  (fElapsed, str(arFrames.shape), len(arFrames) / fElapsed))

            # show orange wait box
            frame_show(oStream,
                       "orange",
                       "Translating sign ...",
                       tuRectangle=(h, w))

            # crop and downsample frames
            arFrames = images_crop(arFrames, h, w)
            arFrames = frames_downsample(arFrames, 40)

            # Translate frames to flows - these are already scaled between [-1.0, 1.0]
            print("Calculate optical flow on %d frames ..." % len(arFrames))
            timer.start()
            arFlows = frames2flows(arFrames, bThirdChannel=False, bShow=True)
            print("Optical flow per frame: %.3f" %
                  (timer.stop() / len(arFrames)))

            # predict video from flows
            print("Predict video with %s ..." % (keI3D.name))
            arX = np.expand_dims(arFlows, axis=0)
            arProbas = keI3D.predict(arX, verbose=1)[0]
            nLabel, sLabel, fProba = probability2label(arProbas,
                                                       oClasses,
                                                       nTop=3)

            sResults = "Sign: %s (%.0f%%)" % (sLabel, fProba * 100.)
            print(sResults)
            nCount += 1

        # quit
        elif key == ord('q'):
            break

    oStream.release()
    cv2.destroyAllWindows()

    return
Exemple #4
0
    "fDurationAvg": 5.0
}  # seconds

# files
sClassFile = "class.csv"

print("\nStarting gesture recognition live demo ... ")
print(os.getcwd())
print(diVideoSet)

# load label description
oClasses = VideoClasses(sClassFile)

sModelFile = "epochs_001-val_acc_0.980.hdf5"
h, w = 224, 224
keI3D = I3D_load(sModelFile, diVideoSet["nFramesNorm"], (h, w, 2),
                 oClasses.nClasses)


def live():
    gameDisplay.blit(carImg, (0, 0))

    # open a pointer to the webcam video stream
    oStream = video_start(device=1,
                          tuResolution=(320, 240),
                          nFramePerSecond=diVideoSet["nFpsAvg"])

    timer = Timer()
    sResults = ""
    nCount = 0
    while True:
        # show live video and wait for key stroke