Exemple #1
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Age = row[0]
        response.Menopause = row[1]
        response.Tumor_size = row[2]
        response.Inv_nodes = row[3]
        response.Node_caps = row[4]
        response.Deg_malig = row[5]
        response.Breast = row[6]
        response.Breast_quad = row[7]
        response.Irradiat = row[8]
        response.Class = row[9]

        ###############################################################
        return response
Exemple #2
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Clump_thickness                = numpy.uint32(row[0])
        response.Cell_size_uniformity           = numpy.uint32(row[1])
        response.Cell_shape_uniformity          = numpy.uint32(row[2])
        response.Marginal_adhesion              = numpy.uint32(row[3])
        response.Single_epi_cell_size           = numpy.uint32(row[4])
        response.Bare_nuclei                    = row[5]
        response.Bland_chromatin                = numpy.uint32(row[6])
        response.Normal_nucleoli                = numpy.uint32(row[7])
        response.Mitoses                        = numpy.uint32(row[8])
        response.Class                          = row[9]

        ###############################################################
        return response
Exemple #3
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Length = numpy.uint32(row[0])
        response.Even_odd = row[1]
        response.First_char_vowel = row[2]
        response.Second_char_vowel = row[3]
        response.Vowels = numpy.uint32(row[4])
        response.Consonants = numpy.uint32(row[5])
        response.Vowel_consonant_ratio = row[6]
        response.Spaces = numpy.uint32(row[7])
        response.Dots = numpy.uint32(row[8])
        response.Words = numpy.uint32(row[9])
        response.Class = row[10]

        ###############################################################
        return response
Exemple #4
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Attribute_1 = row[0]
        response.Attribute_2 = row[1]
        response.Attribute_3 = row[2]
        response.Attribute_4 = row[3]
        response.Attribute_5 = row[4]
        response.Attribute_6 = row[5]
        response.Attribute_7 = row[6]
        response.Attribute_8 = row[7]
        response.Attribute_9 = row[8]
        response.Class = row[9]

        ###############################################################
        return response
Exemple #5
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Mcv = numpy.uint32(row[0])
        response.Alkphos = numpy.uint32(row[1])
        response.Sgpt = numpy.uint32(row[2])
        response.Sgot = numpy.uint32(row[3])
        response.Gammagt = numpy.int64(row[4])
        response.Drinks = row[5]

        ###############################################################
        return response
Exemple #6
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Mpg                            = row[0]
        response.Cylinders                      = row[1]
        response.Cubicinches                    = row[2]
        response.Horsepower                     = numpy.uint32(row[3])
        response.Weightlbs                      = row[4]
        response.Time_to_sixty                  = numpy.uint32(row[5])
        response.Year                           = row[6]
        response.Class                          = row[7]

        ###############################################################
        return response
Exemple #7
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Largest_spot_size              = row[0]
        response.Spot_distribution              = row[1]
        response.Activity                       = row[2]
        response.Evolution                      = row[3]
        response.Previous_24_hour_flare_activity_code = row[4]
        response.Historically_complex           = row[5]
        response.Did_region_become_historically_complex = row[6]
        response.Area                           = row[7]
        response.Area_of_the_largest_spot       = row[8]
        response.C_class_flares_production_by_this_region = row[9]
        response.M_class_flares_production_by_this_region = row[10]
        response.X_class_flares_production_by_this_region = row[11]
        response.Class                          = row[12]

        ###############################################################
        return response
Exemple #8
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        # This is for OpenML dataset # 61
        ###############################################################

        response.Sepallength                    = row[0]
        response.Sepalwidth                     = row[1]
        response.Petallength                    = row[2]
        response.Petalwidth                     = row[3]
        response.Class                          = row[4]

        ###############################################################
        return response
Exemple #9
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Observation_number = row[0]
        response.Hospital_identification_number_for_blood_sample = numpy.int64(
            row[1])
        response.Age_of_patient = numpy.uint32(row[2])
        response.Date_that_blood_sample_was_taken = numpy.int64(row[3])
        response.Ml = row[4]
        response.M2 = row[5]
        response.M3 = row[6]
        response.M4 = row[7]
        response.Class = row[8]

        ###############################################################
        return response
Exemple #10
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Home_away = row[0]
        response.Favorite_points = numpy.uint32(row[1])
        response.Underdog_points = numpy.uint32(row[2])
        response.Pointspread = row[3]
        response.Favorite_name = row[4]
        response.Underdog_name = row[5]
        response.Year = numpy.uint32(row[6])
        response.Week = numpy.uint32(row[7])
        response.Weekday = row[8]
        response.Overtime = row[9]

        ###############################################################
        return response
Exemple #11
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Fixed_acidity = row[0]
        response.Volatile_acidity = row[1]
        response.Citric_acid = row[2]
        response.Residual_sugar = row[3]
        response.Chlorides = row[4]
        response.Free_sulfur_dioxide = row[5]
        response.Total_sulfur_dioxide = row[6]
        response.Density = row[7]
        response.Ph = row[8]
        response.Sulphates = row[9]
        response.Alcohol = row[10]
        response.Class = row[11]

        ###############################################################
        return response
Exemple #12
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Id = numpy.uint32(row[0])
        response.Englishsepaker = row[1]
        response.Courseinstructor = row[2]
        response.Course = row[3]
        response.Summer = row[4]
        response.Classsize = numpy.uint32(row[5])
        response.Class = row[6]

        ###############################################################
        return response
Exemple #13
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Sex                            = row[0]
        response.Dvrt                           = numpy.uint32(row[1])
        response.Educational_level              = row[2]
        response.Leaving_certificate            = row[3]
        response.Prestige_score                 = row[4]
        response.Type_school                    = row[5]

        ###############################################################
        return response
Exemple #14
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.A01                            = numpy.uint32(row[0])
        response.A02                            = numpy.uint32(row[1])
        response.A03                            = row[2]
        response.A04                            = row[3]
        response.A05                            = row[4]
        response.A06                            = row[5]
        response.A07                            = row[6]
        response.A08                            = row[7]
        response.A09                            = row[8]
        response.A10                            = row[9]
        response.A11                            = row[10]
        response.A12                            = row[11]
        response.A13                            = row[12]
        response.A14                            = row[13]
        response.A15                            = row[14]
        response.A16                            = row[15]
        response.A17                            = row[16]
        response.A18                            = row[17]
        response.A19                            = row[18]
        response.A20                            = row[19]
        response.A21                            = row[20]
        response.A22                            = row[21]
        response.A23                            = row[22]
        response.A24                            = row[23]
        response.A25                            = row[24]
        response.A26                            = row[25]
        response.A27                            = row[26]
        response.A28                            = row[27]
        response.A29                            = row[28]
        response.A30                            = row[29]
        response.A31                            = row[30]
        response.A32                            = row[31]
        response.A33                            = row[32]
        response.A34                            = row[33]
        response.Class                          = row[34]

        ###############################################################
        return response
Exemple #15
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Tr = row[0]
        response.Tree = row[1]
        response.Br = row[2]
        response.Tl = row[3]
        response.In = numpy.uint32(row[4])
        response.Internode_1 = row[5]
        response.Internode_2 = row[6]
        response.Internode_3 = row[7]
        response.Internode_4 = row[8]
        response.Internode_5 = row[9]
        response.Internode_6 = row[10]
        response.Internode_7 = row[11]
        response.Internode_8 = row[12]
        response.Internode_9 = row[13]
        response.Internode_10 = row[14]
        response.Internode_11 = row[15]
        response.Internode_12 = row[16]
        response.Internode_13 = row[17]
        response.Internode_14 = row[18]
        response.Internode_15 = row[19]
        response.Internode_16 = row[20]
        response.Internode_17 = row[21]
        response.Internode_18 = row[22]
        response.Internode_19 = row[23]
        response.Internode_20 = row[24]
        response.Internode_21 = row[25]
        response.Internode_22 = row[26]
        response.Internode_23 = row[27]
        response.Internode_24 = row[28]
        response.Internode_25 = row[29]
        response.Internode_26 = row[30]
        response.Internode_27 = row[31]
        response.Internode_28 = row[32]
        response.Internode_29 = row[33]

        ###############################################################
        return response
Exemple #16
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.X1                             = row[0]
        response.X2                             = row[1]
        response.X3                             = row[2]
        response.X4                             = row[3]
        response.X5                             = row[4]
        response.X6                             = row[5]
        response.X7                             = row[6]
        response.X8                             = row[7]
        response.X9                             = row[8]
        response.X10                            = row[9]
        response.X11                            = row[10]
        response.X12                            = row[11]
        response.X13                            = row[12]
        response.X14                            = row[13]
        response.X15                            = row[14]
        response.X16                            = row[15]
        response.X17                            = row[16]
        response.X18                            = row[17]
        response.X19                            = row[18]
        response.X20                            = row[19]
        response.X21                            = row[20]
        response.X22                            = row[21]
        response.X23                            = row[22]
        response.X24                            = row[23]
        response.X25                            = row[24]
        response.X26                            = row[25]
        response.X27                            = row[26]
        response.X28                            = row[27]
        response.X29                            = row[28]
        response.X30                            = row[29]
        response.X31                            = row[30]
        response.X32                            = row[31]
        response.Phase                          = row[32]

        ###############################################################
        return response
    def hppdatabroker(self, request, context):
        parameters = get_parameters()
        logger.debug("Connecting to databroker")

        response = model_pb2.Features(MSSubClass=float(parameters[0]),
                                      LotArea=float(parameters[1]),
                                      YearBuilt=float(parameters[2]),
                                      BedroomAbvGr=float(parameters[3]),
                                      TotRmsAbvGrd=float(parameters[4]))
        logger.debug(response)
        return response
Exemple #18
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Age = numpy.uint32(row[0])
        response.Sex = row[1]
        response.On_thyroxine = row[2]
        response.Query_on_thyroxine = row[3]
        response.On_antithyroid_medication = row[4]
        response.Sick = row[5]
        response.Pregnant = row[6]
        response.Thyroid_surgery = row[7]
        response.I131_treatment = row[8]
        response.Query_hypothyroid = row[9]
        response.Query_hyperthyroid = row[10]
        response.Lithium = row[11]
        response.Goitre = row[12]
        response.Tumor = row[13]
        response.Hypopituitary = row[14]
        response.Psych = row[15]
        response.Tsh_measured = row[16]
        response.Tsh = row[17]
        response.T3_measured = row[18]
        response.T3 = numpy.uint32(row[19])
        response.Tt4_measured = row[20]
        response.Tt4 = numpy.uint32(row[21])
        response.T4u_measured = row[22]
        response.T4u = numpy.uint32(row[23])
        response.Fti_measured = row[24]
        response.Fti = numpy.uint32(row[25])
        response.Tbg_measured = row[26]
        response.Tbg = row[27]
        response.Referral_source = row[28]
        response.Class = row[29]

        ###############################################################
        return response
Exemple #19
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1
Exemple #20
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.V1 = row[0]
        response.V2 = row[1]
        response.V3 = row[2]
        response.V4 = row[3]
        response.V5 = row[4]
        response.V6 = row[5]
        response.V7 = row[6]
        response.V8 = row[7]
        response.V9 = row[8]
        response.V10 = row[9]
        response.V11 = row[10]
        response.V12 = row[11]
        response.V13 = row[12]
        response.V14 = row[13]
        response.V15 = row[14]
        response.V16 = row[15]
        response.V17 = row[16]
        response.V18 = row[17]
        response.V19 = row[18]
        response.V20 = row[19]
        response.V21 = row[20]
        response.V22 = row[21]
        response.V23 = row[22]
        response.V24 = row[23]
        response.Class = row[24]

        ###############################################################
        return response
Exemple #21
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Cap_shape                      = row[0]
        response.Cap_surface                    = row[1]
        response.Cap_color                      = row[2]
        response.Bruises_3f                     = row[3]
        response.Odor                           = row[4]
        response.Gill_attachment                = row[5]
        response.Gill_spacing                   = row[6]
        response.Gill_size                      = row[7]
        response.Gill_color                     = row[8]
        response.Stalk_shape                    = row[9]
        response.Stalk_root                     = row[10]
        response.Stalk_surface_above_ring       = row[11]
        response.Stalk_surface_below_ring       = row[12]
        response.Stalk_color_above_ring         = row[13]
        response.Stalk_color_below_ring         = row[14]
        response.Veil_type                      = row[15]
        response.Veil_color                     = row[16]
        response.Ring_number                    = row[17]
        response.Ring_type                      = row[18]
        response.Spore_print_color              = row[19]
        response.Population                     = row[20]
        response.Habitat                        = row[21]
        response.Class                          = row[22]

        ###############################################################
        return response
Exemple #22
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Ds_name                        = row[0]
        response.T                              = row[1]
        response.N                              = row[2]
        response.P                              = numpy.uint32(row[3])
        response.K                              = numpy.uint32(row[4])
        response.Bin                            = numpy.uint32(row[5])
        response.Cost                           = numpy.uint32(row[6])
        response.Sdratio                        = row[7]
        response.Correl                         = row[8]
        response.Cancor1                        = row[9]
        response.Cancor2                        = row[10]
        response.Fract1                         = row[11]
        response.Fract2                         = row[12]
        response.Skewness                       = row[13]
        response.Kurtosis                       = row[14]
        response.Hc                             = row[15]
        response.Hx                             = row[16]
        response.Mcx                            = row[17]
        response.Enatr                          = row[18]
        response.Nsratio                        = row[19]
        response.Alg_name                       = row[20]
        response.Class                          = row[21]

        ###############################################################
        return response
Exemple #23
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Loc = row[0]
        response.V_g_ = row[1]
        response.Ev_g_ = row[2]
        response.Iv_g_ = row[3]
        response.N = row[4]
        response.V = row[5]
        response.L = row[6]
        response.D = row[7]
        response.I = row[8]
        response.E = row[9]
        response.B = row[10]
        response.T = row[11]
        response.Locode = row[12]
        response.Locomment = numpy.uint32(row[13])
        response.Loblank = numpy.uint32(row[14])
        response.Loccodeandcomment = numpy.uint32(row[15])
        response.Uniq_op = row[16]
        response.Uniq_opnd = row[17]
        response.Total_op = row[18]
        response.Total_opnd = row[19]
        response.Branchcount = row[20]
        response.Defects = row[21]

        ###############################################################
        return response
Exemple #24
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Class = row[0]
        response.Buying_price_vhigh = row[1]
        response.Buying_price_high = row[2]
        response.Buying_price_med = row[3]
        response.Buying_price_low = row[4]
        response.Maintenance_price_vhigh = row[5]
        response.Maintenance_price_high = row[6]
        response.Maintenance_price_med = row[7]
        response.Maintenance_price_low = row[8]
        response.Doors_2 = row[9]
        response.Doors_3 = row[10]
        response.Doors_4 = row[11]
        response.Doors_5more = row[12]
        response.Persons_2 = row[13]
        response.Persons_4 = row[14]
        response.Persons_more = row[15]
        response.Luggage_boot_size_small = row[16]
        response.Luggage_boot_size_med = row[17]
        response.Luggage_boot_size_big = row[18]
        response.Safety_low = row[19]
        response.Safety_med = row[20]
        response.Safety_high = row[21]

        ###############################################################
        return response
Exemple #25
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.State = numpy.uint32(row[0])
        response.Account_length = numpy.uint32(row[1])
        response.Area_code = row[2]
        response.Phone_number = row[3]
        response.International_plan = row[4]
        response.Voice_mail_plan = row[5]
        response.Number_vmail_messages = numpy.uint32(row[6])
        response.Total_day_minutes = row[7]
        response.Total_day_calls = numpy.uint32(row[8])
        response.Total_day_charge = row[9]
        response.Total_eve_minutes = row[10]
        response.Total_eve_calls = numpy.uint32(row[11])
        response.Total_eve_charge = row[12]
        response.Total_night_minutes = row[13]
        response.Total_night_calls = numpy.uint32(row[14])
        response.Total_night_charge = row[15]
        response.Total_intl_minutes = row[16]
        response.Total_intl_calls = numpy.uint32(row[17])
        response.Total_intl_charge = row[18]
        response.Number_customer_service_calls = row[19]
        response.Class = row[20]

        ###############################################################
        return response
Exemple #26
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Checking_status = row[0]
        response.Duration = numpy.uint32(row[1])
        response.Credit_history = row[2]
        response.Purpose = row[3]
        response.Credit_amount = row[4]
        response.Savings_status = row[5]
        response.Employment = row[6]
        response.Installment_commitment = numpy.uint32(row[7])
        response.Personal_status = row[8]
        response.Other_parties = row[9]
        response.Residence_since = numpy.uint32(row[10])
        response.Property_magnitude = row[11]
        response.Age = numpy.uint32(row[12])
        response.Other_payment_plans = row[13]
        response.Housing = row[14]
        response.Existing_credits = numpy.uint32(row[15])
        response.Job = row[16]
        response.Num_dependents = numpy.uint32(row[17])
        response.Own_telephone = row[18]
        response.Foreign_worker = row[19]
        response.Class = row[20]

        ###############################################################
        return response
Exemple #27
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Region_centroid_col            = numpy.uint32(row[0])
        response.Region_centroid_row            = numpy.uint32(row[1])
        response.Region_pixel_count             = numpy.uint32(row[2])
        response.Short_line_density_5           = row[3]
        response.Short_line_density_2           = row[4]
        response.Vedge_mean                     = row[5]
        response.Vegde_sd                       = row[6]
        response.Hedge_mean                     = row[7]
        response.Hedge_sd                       = row[8]
        response.Intensity_mean                 = row[9]
        response.Rawred_mean                    = row[10]
        response.Rawblue_mean                   = row[11]
        response.Rawgreen_mean                  = row[12]
        response.Exred_mean                     = row[13]
        response.Exblue_mean                    = row[14]
        response.Exgreen_mean                   = row[15]
        response.Value_mean                     = row[16]
        response.Saturation_mean                = row[17]
        response.Hue_mean                       = row[18]
        response.Class                          = row[19]

        ###############################################################
        return response
def run(hpp_parameters):
    logging.basicConfig()
    print("Calling HPP_Stub..")
    start_ch = timer()
    with grpc.insecure_channel('localhost:{}'.format(port)) as channel:
        stub = model_pb2_grpc.PredictStub(channel)
        ui_request = model_pb2.Features(MSSubClass=float(hpp_parameters[0]),
                                        LotArea=float(hpp_parameters[1]),
                                        YearBuilt=float(hpp_parameters[2]),
                                        BedroomAbvGr=float(hpp_parameters[3]),
                                        TotRmsAbvGrd=float(hpp_parameters[4]))
        response = stub.predict_sale_price(ui_request)

    print("Greeter client received: ")
    print(response)
    end_ch = timer()
    print('Done!')
    ch_time = end_ch - start_ch
    print('Time for connecting to server = {}'.format(ch_time))
    return response.salePrice
Exemple #29
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Compactness                    = numpy.uint32(row[0])
        response.Circularity                    = numpy.uint32(row[1])
        response.Distance_circularity           = numpy.uint32(row[2])
        response.Radius_ratio                   = row[3]
        response.Pr_axis_aspect_ratio           = numpy.uint32(row[4])
        response.Max_length_aspect_ratio        = numpy.uint32(row[5])
        response.Scatter_ratio                  = row[6]
        response.Elongatedness                  = numpy.uint32(row[7])
        response.Pr_axis_rectangularity         = numpy.uint32(row[8])
        response.Max_length_rectangularity      = numpy.uint32(row[9])
        response.Scaled_variance_major          = row[10]
        response.Scaled_variance_minor          = row[11]
        response.Scaled_radius_of_gyration      = row[12]
        response.Skewness_about_major           = numpy.uint32(row[13])
        response.Skewness_about_minor           = numpy.uint32(row[14])
        response.Kurtosis_about_major           = numpy.uint32(row[15])
        response.Kurtosis_about_minor           = numpy.uint32(row[16])
        response.Hollows_ratio                  = numpy.uint32(row[17])
        response.Class                          = row[18]

        ###############################################################
        return response
Exemple #30
0
    def get_next_row(self, request, context):
        response = model_pb2.Features()
        total_rows = openml_obj.get_num_rows()
        current_row = openml_obj.current_row
        #print("total number of rows of OpenML file: ", total_rows)
        if current_row == total_rows:
            context.set_code(grpc.StatusCode.NOT_FOUND)
            context.set_details('All available data has been processed')
            print("All data processed. Exception raised")
            return response

        #print(f"fetching row {current_row} from a total of {total_rows}")
        row = openml_obj.get_next_row(current_row)
        openml_obj.current_row = openml_obj.current_row + 1

        ###############################################################
        # Here goes the OpenML dataset specific Feature assignments
        ###############################################################

        response.Lymphatics = row[0]
        response.Block_of_affere = row[1]
        response.Bl_of_lymph_c = row[2]
        response.Bl_of_lymph_s = row[3]
        response.By_pass = row[4]
        response.Extravasates = row[5]
        response.Regeneration_of = row[6]
        response.Early_uptake_in = row[7]
        response.Lym_nodes_dimin = numpy.uint32(row[8])
        response.Lym_nodes_enlar = numpy.uint32(row[9])
        response.Changes_in_lym = row[10]
        response.Defect_in_node = row[11]
        response.Changes_in_node = row[12]
        response.Changes_in_stru = row[13]
        response.Special_forms = row[14]
        response.Dislocation_of = row[15]
        response.Exclusion_of_no = row[16]
        response.No_of_nodes_in = numpy.uint32(row[17])
        response.Class = row[18]

        ###############################################################
        return response