Exemple #1
0
def pairOpt(workloads):
    nStep = 1000
    nTry = 10
    dt = 1
    # machines = range(1, int(len(workloads)/2) + 1)
    idx = lambda hi, ni: ni + hi * len(machines)
    ridx = lambda x: (x // len(machines), x % len(machines))
    models = {}
    #    param = {
    #        'loss': 'ls',
    #        'learning_rate': .1,
    #        'alpha': 0.9,
    #        'max_depth': 4,
    #        'n_estimators': 100,
    #        'm': 10000,
    #    }
    perflog = {
        'realized': [],
        'predicted': [],
    }
    totrain = []

    for hi in machines:
        model = model_xgb.XGBoost()
        model.init(**params)
        totrain.append((model, hi, nTrain, dt, libdata.apps))

    lmodels = pool.map(trainModel, totrain)
    for i in range(len(lmodels)):
        models[i + 1] = lmodels[i]

    cache = {}
    print(workloads)
    stdwl = list(stdWorkloads(workloads))
    print(stdwl)
    table = []
    for i in range(len(stdwl)):
        hi = i + 1
        app0, app1 = stdwl[i]
        p = _pair_predict(models[hi], hi, app0, app1, cache=cache, dt=dt)
        table.append({'power': p['power_0'], 'app': app0})
        table.append({'power': p['power_1'], 'app': app1})
    tableidx = [idx(hi, ni) for hi in machines for ni in range(2)]
    table = pd.DataFrame(table, index=tableidx)

    while nStep > 0:
        nStep -= 1
        perflog['realized'].append(
            oneRun([
                table['app'].loc[idx(hi, ni)] for hi in machines
                for ni in range(2)
            ])['pkgpwr'])
        perflog['predicted'].append(table['power'].sum())
        tsorted = table.sort_values(by='power', ascending=False)
        # print(tsorted)
        ok = False
        for i, j in [(k, len(tsorted) - l - 1) for k in range(nTry)
                     for l in range(nTry)]:
            h0, n0 = ridx(tsorted.index[i])
            h1, n1 = ridx(tsorted.index[j])
            if tsorted.loc[idx(h0, n0), 'app'] == tsorted.loc[idx(h1, n1),
                                                              'app']:
                continue
            #print(tsorted.columns.values)
            pbefore = tsorted['power'].loc[[
                idx(h0, n0),
                idx(h0, 1 - n0),
                idx(h1, n1),
                idx(h1, 1 - n1)
            ]].sum()
            a00, a01 = tsorted.loc[idx(h0, 0), 'app'], tsorted.loc[idx(h0, 1),
                                                                   'app']
            a10, a11 = tsorted.loc[idx(h1, 0), 'app'], tsorted.loc[idx(h1, 1),
                                                                   'app']
            a0before = [a00, a01]
            a1before = [a10, a11]
            a0after = a0before[:]
            a1after = a1before[:]
            a0after[n0] = a1before[n1]
            a1after[n1] = a0before[n0]
            if h0 == h1:
                a0after[n1] = a1after[n1]
                a1after[n0] = a0after[n0]
            # print(a0before, a0after, a1before, a1after)
            pa0, pa1 = _pair_predict(models[h0],
                                     h0,
                                     a0after[0],
                                     a0after[1],
                                     cache=cache,
                                     dt=dt)
            pb0, pb1 = _pair_predict(models[h1],
                                     h1,
                                     a1after[0],
                                     a1after[1],
                                     cache=cache,
                                     dt=dt)
            if pa0 + pa1 + pb0 + pb1 < pbefore:
                tsorted.set_value(idx(h0, 0), 'app', a0after[0])
                tsorted.set_value(idx(h0, 1), 'app', a0after[1])
                tsorted.set_value(idx(h1, 0), 'app', a1after[0])
                tsorted.set_value(idx(h1, 1), 'app', a1after[1])
                tsorted.set_value(idx(h0, 0), 'power', pa0)
                tsorted.set_value(idx(h0, 1), 'power', pa1)
                tsorted.set_value(idx(h1, 0), 'power', pb0)
                tsorted.set_value(idx(h1, 1), 'power', pb1)
                ok = True
                break
        if not ok:
            break
        table = tsorted
    perflog = pd.DataFrame(perflog)
    fig, ax = plt.subplots()
    ax.plot(perflog.index, perflog['realized'], 'r')
    ax.plot(perflog.index, perflog['predicted'], 'b')
    fig.suptitle(','.join(workloads))
    #fig.savefig(optpdf, format='pdf')
    return [
        table['app'].loc[idx(hi, ni)] for hi in machines for ni in range(2)
    ]
Exemple #2
0
 allres = []
 pred_time = 0
 train_time = 0
 for eval_times in range(10):
     print("start: %s\t%d" % (str(datetime.datetime.now()), eval_times))
     pool = mp.Pool(mp.cpu_count())
     totrain = []
     #apps_train = rand.sample(libdata.apps, 9)
     apps_train = apps_npb
     temp = list(set(libdata.apps) - set(list(apps_train)))
     apps_validation = temp
     print("validation apps: ", apps_validation)
     train_start = time.time()
     for hi in machines:
         if ml_method == 'xgb':
             model = model_xgb.XGBoost()
         if ml_method == 'lr':
             model = model_lr.LR()
         if ml_method == 'svr':
             model = model_svr.SVM()
         if ml_method == 'gp':
             model = model_gp.GPR()
         if ml_method == 'mlp':
             model = model_mlp.MLP()
         model.init(**params)
         totrain.append((model, hi, nTrain, dt, apps_train))
     lmodels = pool.map(trainModel, totrain)
     print("finish: %s\t%d" % (str(datetime.datetime.now()), eval_times))
     for i in range(len(lmodels)):
         models[i + 1] = lmodels[i]
     train_time += (time.time() - train_start)