def run(self): """ start inferring :return: """ # prepare data self.eval_data = self.prepare_data() # split data x_eval, y_eval = self.eval_data # init configs from checkpoints json file and flags config = load_config(self.flags) # init model class model_class_name, model_file = config['model_class'], config[ 'model_file'] self.model_class = find_model(model_class_name, model_file) # init model model = self.model_class(config) model.init() # init variables model.set_inputs(x_eval) # restore model load_model(model, self.flags.checkpoint_dir, self.flags.checkpoint_name) # evaluate return model.evaluate(x_eval, y_eval)
def run(self, **kwargs): """ start inferring :return: """ # prepare data self.eval_data = self.data() # split data x_eval, y_eval = self.eval_data # init configs from checkpoints json file and flags config = load_config(self.config) # init model class model_class_name, model_file_name = config.get( 'model_class_name'), config.get('model_file_name') self.model_class = find_model_class(model_class_name, model_file_name) # init model model = self.model_class(config=config) model.logger = self.logger self.logger.info(f'initialize model logger {model.logger} of {model}') # restore model load_model(model, self.config.get('checkpoint_dir'), self.config.get('checkpoint_name')) # evaluate return model.evaluate(x_eval, y_eval, **kwargs)
def run(self): """ start inferring :return: """ # get test_data self.test_data = self.prepare_data() # init model model = self.model_class(load_config(self.flags)) model.init() # init variables model.call(tf.keras.Input(shape=(get_shape(self.test_data))), training=False) # restore model if exists load_model(model, self.flags.checkpoint_dir, self.flags.checkpoint_name) # infer return model.infer(self.test_data)
def run(self): """ start inferring :return: """ # prepare data self.eval_data = self.prepare_data() # split data x_eval, y_eval = self.eval_data # init model model = self.model_class(load_config(self.flags)) model.init() # init variables model.call(tf.keras.Input(shape=(get_shape(x_eval))), training=False) # restore model load_model(model, self.flags.checkpoint_dir, self.flags.checkpoint_name) # evaluate return model.evaluate(x_eval, y_eval)
def run(self, **kwargs): """ start inferring :return: """ # get test_data self.test_data = self.data() # init configs from checkpoints json file and flags config = load_config(self.config) # init model class model_class_name, model_file_name = config.get( 'model_class_name'), config.get('model_file_name') self.model_class = find_model_class(model_class_name, model_file_name) # init model model = self.model_class(config=config) # restore model if exists load_model(model, self.config.get('checkpoint_dir'), self.config.get('checkpoint_name')) # infer return model.infer(self.test_data, **kwargs)
def run(self): """ start inferring :return: """ # get test_data self.test_data = self.prepare_data() # init configs from checkpoints json file and flags config = load_config(self.flags) # init model class model_class_name, model_file = config['model_class'], config[ 'model_file'] self.model_class = find_model(model_class_name, model_file) # init model model = self.model_class(config) model.init() # init variables model.set_inputs(self.test_data) # restore model if exists load_model(model, self.flags.checkpoint_dir, self.flags.checkpoint_name) # infer return model.infer(self.test_data)