Exemple #1
0
    def __init__(self,
                 backbone='resnet',
                 output_stride=16,
                 num_classes=19,
                 sync_bn=True,
                 freeze_bn=False,
                 args=None,
                 separate=False):
        super(DeepLab, self).__init__()
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone, output_stride, BatchNorm,
                                       args)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm, args,
                               separate)
        self.decoder = build_decoder(num_classes, backbone, BatchNorm, args,
                                     separate)

        if freeze_bn:
            self.freeze_bn()
Exemple #2
0
    def __init__(self, backbone='resnet', output_stride=16, num_classes=21,
                 sync_bn=False, freeze_bn=False):
        super(DeepLab, self).__init__()
        if backbone == 'drn':
            output_stride = 8
        if backbone == 'resnet':
            link_in = 1024
            link_out = 1024
        elif backbone == 'mobilenet':
            link_in = 64
            link_out = 64

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone, output_stride, BatchNorm)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.link_conv = nn.Sequential(nn.Conv2d(link_in, link_out, kernel_size=1, stride=1, padding=0, bias=False))
        self.last_conv = nn.Sequential(nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
                                        BatchNorm(64),
                                        nn.ReLU(),
                                        nn.Dropout(0.1),
                                        nn.Conv2d(64, num_classes, kernel_size=1, stride=1))

        self._init_weight()
        if freeze_bn:
            self.freeze_bn()
    def __init__(self,
                 args,
                 backbone='resnet',
                 output_stride=16,
                 num_classes=21,
                 sync_bn=True,
                 freeze_bn=False):
        super(DeepLab, self).__init__()
        self.args = args
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone, output_stride, BatchNorm)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        if self.args.use_kinematic == False:
            self.decoder = build_decoder(num_classes, backbone, BatchNorm)
        else:
            self.decoder = build_decoder_kinematic(backbone, BatchNorm)
            self.kinematic_layer = build_kinematic_graph(BatchNorm)

        self.freeze_bn = freeze_bn
Exemple #4
0
 def __init__(self,
              backbone='resnet101',
              output_stride=16,
              num_classes=21,
              sync_bn=True,
              freeze_bn=False,
              enable_interpolation=True,
              pretrained_path=None,
              norm_layer=nn.BatchNorm2d,
              enable_aspp=True):
     super(DeepLab, self).__init__()
     self.enable_aspp = enable_aspp
     if backbone == 'drn':
         output_stride = 8
     BatchNorm = norm_layer
     self.backbone = build_backbone(backbone,
                                    output_stride,
                                    BatchNorm,
                                    pretrained_path=pretrained_path)
     self.aspp = build_aspp(backbone,
                            output_stride,
                            BatchNorm,
                            enable_aspp=self.enable_aspp)
     self.decoder = build_decoder(num_classes, backbone, BatchNorm)
     self.enable_interpolation = enable_interpolation
Exemple #5
0
    def __init__(self,
                 backbone='resnet',
                 output_stride=16,
                 num_classes=19,
                 use_ABN=True,
                 freeze_bn=False,
                 args=None,
                 separate=False):
        super(DeepLab, self).__init__()
        if backbone == 'drn':
            output_stride = 8

        if use_ABN:
            BatchNorm = ABN
        else:
            BatchNorm = NaiveBN

        self.backbone = build_backbone(backbone, output_stride, BatchNorm,
                                       args)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm, args,
                               separate)
        self.decoder = build_decoder(num_classes, backbone, BatchNorm, args,
                                     separate)

        if freeze_bn:
            self.freeze_bn()
Exemple #6
0
    def __init__(self, backbone='resnet', output_stride=16, num_classes=21,
                 sync_bn=True, freeze_bn=False):
        super(DeepLab, self).__init__()
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone, output_stride, BatchNorm)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)
        # self.last_conv = nn.Sequential(nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
        #                                BatchNorm(256),
        #                                nn.ReLU(),
        #                                nn.Dropout(0.5),
        #                                nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
        #                                BatchNorm(256),
        #                                nn.ReLU(),
        #                                nn.Dropout(0.1),
        #                                nn.Conv2d(256, 2, kernel_size=1, stride=1))

        self._init_weight()
        if freeze_bn:
            self.freeze_bn()
Exemple #7
0
    def __init__(self,
                 backbone='seresnext101',
                 output_stride=16,
                 num_classes=5,
                 sync_bn=True,
                 freeze_bn=False):
        super(DeepLab, self).__init__()
        if backbone == 'drn':
            output_stride = 8

        if sync_bn:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone, output_stride, BatchNorm)
        #print('bacbone')
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        #print('aspp')
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)
        #print('decoder')
        #self.up = DeconvBlock(304,256,BatchNorm=BatchNorm,n_iter=2)
        #self.last_conv = nn.Conv2d(256, num_classes, kernel_size=1, stride=1)

        if freeze_bn:
            self.freeze_bn()
Exemple #8
0
    def __init__(self,
                 backbone='resnet',
                 output_stride=16,
                 num_classes=21,
                 sync_bn=True,
                 freeze_bn=False,
                 cp_path=None):
        super(DeepLab, self).__init__()
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone, output_stride, BatchNorm)

        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.decoder = build_decoder(21, backbone, BatchNorm)

        if (cp_path is not None):
            cp = torch.load(cp_path, map_location='cpu')
            self.load_state_dict(cp['state_dict'])

        if freeze_bn:
            self.freeze_bn()

        # predict two classes (background / foreground)
        self.decoder.last_conv[-1] = nn.Conv2d(256, 2, kernel_size=1, stride=1)
Exemple #9
0
    def __init__(self,
                 backbone='resnet',
                 output_stride=16,
                 num_classes=21,
                 sync_bn=True,
                 freeze_bn=False):
        super(DeepLab, self).__init__()
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone, output_stride, BatchNorm)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)
        self.sr_decoder = build_sr_decoder(num_classes, backbone, BatchNorm)
        self.pointwise = torch.nn.Sequential(
            torch.nn.Conv2d(num_classes, 3, 1),
            torch.nn.BatchNorm2d(3),  #添加了BN层
            torch.nn.ReLU(inplace=True))

        self.up_sr_1 = nn.ConvTranspose2d(64, 64, 2, stride=2)
        self.up_edsr_1 = EDSRConv(64, 64)
        self.up_sr_2 = nn.ConvTranspose2d(64, 32, 2, stride=2)
        self.up_edsr_2 = EDSRConv(32, 32)
        self.up_sr_3 = nn.ConvTranspose2d(32, 16, 2, stride=2)
        self.up_edsr_3 = EDSRConv(16, 16)
        self.up_conv_last = nn.Conv2d(16, 3, 1)

        self.freeze_bn = freeze_bn
Exemple #10
0
    def __init__(
        self,
        Norm,
        backbone="resnet",
        output_stride=16,
        num_classes=3,
        freeze_bn=False,
        abn=False,
    ):
        super(DeepLabv3, self).__init__()
        self.abn = abn

        if backbone == "drn":
            output_stride = 8

        if Norm == "gn":
            norm = gn
        elif Norm == "bn":
            norm = bn
        elif Norm == "syncbn":
            norm = syncbn

        self.backbone = build_backbone(backbone,
                                       output_stride,
                                       Norm,
                                       dec=False,
                                       abn=abn)
        self.aspp = build_aspp(backbone, output_stride, norm, dec=False)
        if freeze_bn:
            self.freeze_bn()
    def __init__(self, backbone='resnet', output_stride=16, num_classes=21,
                 sync_bn=True, freeze_bn=False, pretrain=True):
        super(DeepLabX, self).__init__()
        self.num_classes = num_classes
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone, output_stride, BatchNorm)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        # self.aspp = build_psp()
        # self.aspp = build_naiveGCE()
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)

        if freeze_bn:
            self.freeze_bn()

        if pretrain:
            self._load_pretrain()

        # change the last inference layer for binary segmentation mask
        last_conv = list(self.decoder.last_conv.children())
        self.decoder.last_conv = nn.Sequential(*last_conv[:-1])
        self.decoder.last_conv.add_module('8', nn.Conv2d(256, 2, 1, 1))
    def __init__(self,
                 backbone='resnet_multiscale',
                 output_stride=16,
                 num_classes=21,
                 sync_bn=True,
                 freeze_bn=False):
        super(DeepLabCA, self).__init__()
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone, output_stride, BatchNorm)

        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)
        self.avg_pool = nn.AdaptiveAvgPool2d(32)
        # self.se=RCAB(2048+1024+512+256+256,1,16)
        self.ca = CAM_Module()
        in_channels = 2048 + 1024 + 512 + 256 + 256
        inter_channels = in_channels // 4
        # self.conv5c = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False),
        #                            BatchNorm(inter_channels),
        #                            nn.ReLU())
        # self.conv5 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, padding=1, bias=False),
        #                            BatchNorm(inter_channels),
        #                            nn.ReLU())

        # self.conv6 = nn.Sequential(nn.Dropout2d(0.1, False), nn.Conv2d(inter_channels, num_classes, 1))

        if freeze_bn:
            self.freeze_bn()
    def __init__(self, args, num_classes=21):
        super(DeepLab, self).__init__()
        self.args = args
        output_stride = args.out_stride

        if args.backbone == 'drn':
            output_stride = 8
        if args.backbone.split('-')[0] == 'efficientnet':
            output_stride = 32

        if args.norm == 'gn': norm = gn
        elif args.norm == 'bn': norm = bn
        elif args.norm == 'syncbn': norm = syncbn
        else:
            print(args.norm, "normalization is not implemented")
            raise NotImplementedError

        self.backbone = build_backbone(args)
        self.aspp = build_aspp(args.backbone, args.out_stride, norm)
        self.decoder = build_decoder(num_classes, args.backbone, norm)

        self.classifier = nn.Linear(300, num_classes)

        if self.args.freeze_bn:
            self.freeze_bn()
Exemple #14
0
    def __init__(self,
                 args,
                 num_classes=21,
                 freeze_bn=False,
                 abn=False,
                 deep_dec=True):
        super(DeepLab, self).__init__()
        self.args = args
        self.abn = abn
        self.deep_dec = deep_dec  # if True, it deeplabv3+, otherwise, deeplabv3
        output_stride = args.out_stride

        if args.backbone == "drn":
            output_stride = 8
        if args.backbone.split("-")[0] == "efficientnet":
            output_stride = 32

        if args.norm == "gn":
            norm = gn
        elif args.norm == "bn":
            norm = bn
        elif args.norm == "syncbn":
            norm = syncbn
        else:
            print(args.norm, "normalization is not implemented")
            raise NotImplementedError

        self.backbone = build_backbone(args)
        self.aspp = build_aspp(args.backbone, args.out_stride, norm)
        if self.deep_dec:
            self.decoder = build_decoder(num_classes, args.backbone, norm)

        if freeze_bn:
            self.freeze_bn()
    def __init__(self,
                 backbone='resnet',
                 output_stride=16,
                 num_classes=21,
                 sync_bn=True,
                 freeze_bn=False,
                 use_iou=True):
        super(DeepLab, self).__init__()
        self.use_iou = use_iou
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone, output_stride, BatchNorm)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)
        if self.use_iou:
            self.maskiou = build_maskiou(num_classes, BatchNorm)

        if freeze_bn:
            self.freeze_bn()
Exemple #16
0
    def __init__(self, low_level_inplanes):
        super(Deeplab, self).__init__()

        #aspp
        self.aspp = build_aspp('', 16, BatchNorm)
        #decoder
        self.conv1 = nn.Conv2d(low_level_inplanes,
                               48,
                               1,
                               bias=False,
                               groups=cfg.RESNETS.NUM_GROUPS)
        self.bn1 = BatchNorm(48)
        self.relu = nn.ReLU()
        self.last_conv = nn.Sequential(
            nn.Conv2d(304,
                      256,
                      kernel_size=3,
                      stride=1,
                      padding=1,
                      bias=False,
                      groups=cfg.RESNETS.NUM_GROUPS), BatchNorm(256),
            nn.ReLU(), nn.Dropout(0.5),
            nn.Conv2d(256,
                      256,
                      kernel_size=3,
                      stride=1,
                      padding=1,
                      bias=False,
                      groups=cfg.RESNETS.NUM_GROUPS), BatchNorm(256),
            nn.ReLU(), nn.Dropout(0.1),
            nn.Conv2d(256, cfg.MODEL.NUM_CLASSES, kernel_size=1, stride=1))
        self._init_weight()
Exemple #17
0
    def __init__(self, args, backbone='resnet', output_stride=16, num_classes=4,
                 sync_bn=False, freeze_bn=False, depth=50):
        super(DeepLab, self).__init__()
        if backbone == 'drn':
            output_stride = 8
        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.args = args
        if self.args.oly_s1 and not self.args.oly_s2:
            in_channel = 2
            pretrn=False
        elif not self.args.oly_s1 and self.args.oly_s2 and not self.args.rgb:
            in_channel = 10
            pretrn = False
        elif not self.args.oly_s1 and self.args.oly_s2 and self.args.rgb:
            in_channel = 3
            pretrn = True
        elif not self.args.oly_s1 and not self.args.oly_s2 and not self.args.rgb:
            in_channel = 12
            pretrn = False
        elif not self.args.oly_s1 and not self.args.oly_s2 and self.args.rgb:
            in_channel = 5
            pretrn = False
        else:
            raise NotImplementedError
        self.backbone = build_backbone(backbone, in_channel, output_stride, BatchNorm, depth, pretrn)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)

        if freeze_bn:
            self.freeze_bn()
Exemple #18
0
    def __init__(self,
                 backbone='resnet',
                 output_stride=16,
                 num_classes=21,
                 freeze_bn=False):
        super(DeepLab, self).__init__()

        BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone, output_stride, BatchNorm)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)

        self.freeze_bn = freeze_bn
Exemple #19
0
    def __init__(self, backbone='resnet', output_stride=16, num_classes=21,
                 freeze_bn=False):
        super(DeepLab, self).__init__()
        if backbone == 'drn':
            output_stride = 8


        BatchNorm = nn.BatchNorm2d

        self.backbone = ResNet101(output_stride, BatchNorm)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)

        if freeze_bn:
            self.freeze_bn()
Exemple #20
0
    def __init__(self, backbone='resnet', output_stride=16, num_classes=21,
                 sync_bn=True, freeze_bn=False):
        super(Deeplabv3, self).__init__()
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone, output_stride, BatchNorm)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)

        self.freeze_bn = freeze_bn
    def __init__(self, backbone='resnet', output_stride=16, num_classes=21,
                 sync_bn=True, freeze_bn=False):
        super(DeepLab, self).__init__()
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone, output_stride, BatchNorm)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)

        if freeze_bn:
            self.freeze_bn()
Exemple #22
0
    def __init__(self, backbone='resnet', output_stride=16, num_classes=21,
                 sync_bn=True, freeze_bn=False):
        super(DeepLab, self).__init__()
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        #self.deconv1 = nn.ConvTranspose2d(21, 21, 1, 4, 0, 0, bias=True)
        self.backbone = build_backbone(backbone, output_stride, BatchNorm)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)

        if freeze_bn:
            self.freeze_bn()
Exemple #23
0
    def __init__(self,
                 backbone='resnet',
                 output_stride=16,
                 sync_bn=True,
                 freeze_bn=False):
        super().__init__()
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone, output_stride, BatchNorm)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.decoder = build_decoder(5, backbone, BatchNorm)

        if freeze_bn:
            self.freeze_bn()
Exemple #24
0
    def __init__(self,
                 backbone='resnet',
                 output_stride=16,
                 num_classes=2,
                 sync_bn=True,
                 freeze_bn=False):
        super(DeepLab, self).__init__()
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d
        self.cls1 = nn.Sequential(
            nn.Conv2d(512, 512, kernel_size=3, padding=1),  # fc6
        )
        self.cls2 = nn.Sequential(
            nn.Conv2d(1024, 512, kernel_size=3, padding=1),  # fc6
        )
        self.backbone = build_backbone(backbone, output_stride, BatchNorm)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)
        self.freeze_bn = freeze_bn
        self.multi_graph_conv = build_graph_conv(backbone, BatchNorm)

        # self.classifier_6 = nn.Sequential(
        #     nn.Conv2d(128, 128, kernel_size=3, dilation=1, padding=1),  # fc6
        #     nn.ReLU(inplace=True)
        # )
        # self.exit_layer = nn.Conv2d(128, 2, kernel_size=1, padding=1)
        # self.cos_similarity_func = nn.CosineSimilarity()
        ############################################################

        bins = [6, 13, 26, 52]
        self.features = []
        for bin in bins:  # [1,2,3,6]
            self.features.append(
                nn.Sequential(
                    nn.AdaptiveAvgPool2d(bin),  # 括号里面的大小是多少,输出来的大小就是多少
                ))
Exemple #25
0
    def __init__(self, concat_channels=64, gcn_dim=514):
        super(DeepLabResnet, self).__init__()
        self.cnn_feature_grids = [112, 56, 28, 28]
        self.normalizer = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                               std=[0.229, 0.224, 0.225])
        self.concat_channels = concat_channels
        self.feat_size = 28
        self.gcn_dim = gcn_dim

        self.image_feature_dim = 256
        # self.resnet = build_backbone("resnet", 8, SynchronizedBatchNorm2d)
        self.resnet = build_backbone("resnet", 8, BatchNorm2d)

        self.conv1_concat = _conv_up(64, concat_channels, upflag=False)
        self.res1_concat, self.res1_concat_up = _conv_up(
            256, concat_channels, 2)
        self.res2_concat, self.res2_concat_up = _conv_up(
            512, concat_channels, 4)
        self.res4_concat, self.res4_concat_up = _conv_up(
            2048, concat_channels, 4)
        # self.res5_concat = _conv_up(512, concat_channels, upflag=False)

        self.edge_annotation_concat = _make_edge_annotation_concat(
            self.gcn_dim)
        self.edge_annotation_channels = 64 * 5

        self.conv_final = _make_conv_final(concat_channels)

        # self.final_PSP = build_aspp("resnet", 8, SynchronizedBatchNorm2d)
        self.final_PSP = build_aspp("resnet", 8, BatchNorm2d)

        self.conv_final_cat = _make_conv_final_cat()

        self.prob_conv = nn.Sequential(
            nn.Conv2d(512, 256, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(256), nn.LeakyReLU(),
            nn.Conv2d(256, 128, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(128), nn.LeakyReLU(),
            nn.Conv2d(128, 64, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(64), nn.LeakyReLU(),
            nn.Conv2d(64, 2, kernel_size=3, padding=1, bias=False))
Exemple #26
0
    def __init__(self,
                 backbone='resnet',
                 output_stride=16,
                 num_classes=15,
                 sync_bn=True,
                 freeze_bn=False):
        super(DeepLab, self).__init__()
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = xception.AlignedXception(output_stride, BatchNorm)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)

        if freeze_bn:
            self.freeze_bn()
    def __init__(self,
                 backbone='resnet',
                 output_stride=16,
                 num_classes=21,
                 sync_bn=True,
                 freeze_bn=False,
                 model_path=os.getcwd()):
        super(DeepLab, self).__init__()
        self.model_path = model_path

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone, output_stride, BatchNorm,
                                       model_path)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)

        self.freeze_bn = freeze_bn
Exemple #28
0
    def __init__(self,
                 backbone='resnet',
                 output_stride=16,
                 num_classes=21,
                 sync_bn=True,
                 freeze_bn=False):
        super(DeepLab, self).__init__()
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SyncBatchNorm
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone, output_stride, BatchNorm)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.encoding = build_encoding(backbone, num_classes, BatchNorm)
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)

        if freeze_bn:
            self.freeze_bn()
    def __init__(self,
                 backbone='resnet',
                 output_stride=16,
                 num_classes=21,
                 sync_bn=True,
                 freeze_bn=False):
        super(DeepLab, self).__init__()
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.CSG = nn.Linear(CODE_SIZE, np.prod(SLICE_SHAPE), bias=False)

        self.backbone = build_backbone(backbone, output_stride, BatchNorm)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm, self.CSG)
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)

        if freeze_bn:
            self.freeze_bn()
Exemple #30
0
    def __init__(self, backbone='resnet', output_stride=16, num_classes=2,
                 sync_bn=True, freeze_bn=False):
        super(DeepLab, self).__init__()
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone, output_stride, BatchNorm)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        # for k in self.backbone.children():
        #     for param in k.parameters():
        #         param.requires_grad = False
        # for k in self.aspp.children():
        #     for param in k.parameters():
        #         param.requires_grad = False
        self.decoder = build_decoder(num_classes, backbone, BatchNorm)
        self._load_pretrained_model(backbone)
        if freeze_bn:
            self.freeze_bn()
Exemple #31
0
    def __init__(self,
                 num_classes,
                 backbone='resnet',
                 output_stride=16,
                 sync_bn=True,
                 freeze_bn=False):
        super(DeepLab, self).__init__()
        self.num_classes = num_classes
        if backbone == 'drn':
            output_stride = 8

        if sync_bn == True:
            BatchNorm = SynchronizedBatchNorm2d
        else:
            BatchNorm = nn.BatchNorm2d

        self.backbone = build_backbone(backbone, output_stride, BatchNorm)
        self.aspp = build_aspp(backbone, output_stride, BatchNorm)
        self.decoder_seg = build_decoder(num_classes + 1, backbone, BatchNorm)
        self.decoder_box = build_decoder(6, backbone, BatchNorm)
        self.pos = None
        if freeze_bn:
            self.freeze_bn()