Exemple #1
0
    def get_predictor(cls):
        ''' load trained model'''

        with cls.lock:
            # check if model is already loaded
            if cls.predictor:
                return cls.predictor

            # create a mask r-cnn model
            mask_rcnn_model = ResNetFPNModel()

            try:
                model_dir = os.environ['SM_MODEL_DIR']
            except KeyError:
                model_dir = '/opt/ml/model'

            try:
                cls.pretrained_model = os.environ['PRETRAINED_MODEL']
            except KeyError:
                pass

            # file path to previoulsy trained mask r-cnn model
            latest_trained_model = ""
            model_search_path = os.path.join(model_dir, "model-*.index")
            for model_file in glob.glob(model_search_path):
                if model_file > latest_trained_model:
                    latest_trained_model = model_file

            trained_model = latest_trained_model[:-6]
            print(f'Using model: {trained_model}')

            # fixed resnet50 backbone weights
            cfg.BACKBONE.WEIGHTS = os.path.join(cls.pretrained_model)
            cfg.MODE_FPN = True
            cfg.MODE_MASK = True
            cfg.TEST.RESULT_SCORE_THRESH = cfg.TEST.RESULT_SCORE_THRESH_VIS
            finalize_configs(is_training=False)

            # Create an inference model
            # PredictConfig takes a model, input tensors and output tensors
            input_tensors = mask_rcnn_model.get_inference_tensor_names()[0]
            output_tensors = mask_rcnn_model.get_inference_tensor_names()[1]

            cls.predictor = OfflinePredictor(
                PredictConfig(model=mask_rcnn_model,
                              session_init=get_model_loader(trained_model),
                              input_names=input_tensors,
                              output_names=output_tensors))
            return cls.predictor
def init_predictor():
    register_coco(cfg.DATA.BASEDIR)
    MODEL = ResNetFPNModel()
    finalize_configs(is_training=False)

    predcfg = PredictConfig(
        model=MODEL,
        #session_init=SmartInit("/home/jetson/Documents/trained_model/500000_17/checkpoint"),
        session_init=SmartInit(
            "/home/jetson/Documents/trained_model/255000_04.01/checkpoint"),
        input_names=MODEL.get_inference_tensor_names()[0],
        output_names=MODEL.get_inference_tensor_names()[1])

    predictor = OfflinePredictor(predcfg)

    return predictor
Exemple #3
0
def evaluate_rcnn(model_name, paper_arxiv_id, cfg_list, model_file):
    evaluator = COCOEvaluator(
        root=COCO_ROOT, model_name=model_name, paper_arxiv_id=paper_arxiv_id
    )
    category_id_to_coco_id = {
        v: k for k, v in COCODetection.COCO_id_to_category_id.items()
    }

    cfg.update_config_from_args(cfg_list)  # TODO backup/restore config
    finalize_configs(False)
    MODEL = ResNetFPNModel() if cfg.MODE_FPN else ResNetC4Model()
    predcfg = PredictConfig(
        model=MODEL,
        session_init=SmartInit(model_file),
        input_names=MODEL.get_inference_tensor_names()[0],
        output_names=MODEL.get_inference_tensor_names()[1],
    )
    predictor = OfflinePredictor(predcfg)

    def xyxy_to_xywh(box):
        box[2] -= box[0]
        box[3] -= box[1]
        return box

    df = get_eval_dataflow("coco_val2017")
    df.reset_state()
    for img, img_id in tqdm.tqdm(df, total=len(df)):
        results = predict_image(img, predictor)
        res = [
            {
                "image_id": img_id,
                "category_id": category_id_to_coco_id.get(
                    int(r.class_id), int(r.class_id)
                ),
                "bbox": xyxy_to_xywh([round(float(x), 4) for x in r.box]),
                "score": round(float(r.score), 3),
            }
            for r in results
        ]
        evaluator.add(res)
        if evaluator.cache_exists:
            break

    evaluator.save()
Exemple #4
0
    parser.add_argument(
        '--benchmark',
        action='store_true',
        help="Benchmark the speed of the model + postprocessing")
    parser.add_argument(
        '--config',
        help="A list of KEY=VALUE to overwrite those defined in config.py",
        nargs='+')
    parser.add_argument('--compact', help='Save a model to .pb')
    parser.add_argument('--serving', help='Save a model to serving file')

    args = parser.parse_args()
    if args.config:
        cfg.update_args(args.config)
    register_coco(cfg.DATA.BASEDIR)  # add COCO datasets to the registry
    MODEL = ResNetFPNModel() if cfg.MODE_FPN else ResNetC4Model()

    if not tf.test.is_gpu_available():
        from tensorflow.python.framework import test_util
        assert get_tf_version_tuple() >= (1, 7) and test_util.IsMklEnabled(), \
            "Inference requires either GPU support or MKL support!"
    assert args.load
    finalize_configs(is_training=False)

    if args.predict or args.visualize:
        cfg.TEST.RESULT_SCORE_THRESH = cfg.TEST.RESULT_SCORE_THRESH_VIS

    if args.visualize:
        do_visualize(MODEL, args.load)
    else:
        predcfg = PredictConfig(
    # add green rectangle arround original picture that with failure
    height, width, channels = img.shape
    cv2.rectangle(img, (0, 0), (width, height),
                  color=(100, 220, 80),
                  thickness=5)

    viz = np.concatenate((img, final), axis=1)
    cv2.imwrite(
        "/home/jetson/tensorpack/examples/FasterRCNN/static/images/output.png",
        viz)
    logger.info("Inference output written to output.png")


if __name__ == '__main__':
    register_coco(cfg.DATA.BASEDIR)
    MODEL = ResNetFPNModel()
    finalize_configs(is_training=False)

    predcfg = PredictConfig(
        model=MODEL,
        session_init=SmartInit(
            "/home/jetson/Documents/trained_model/500000_17/checkpoint"),
        input_names=MODEL.get_inference_tensor_names()[0],
        output_names=MODEL.get_inference_tensor_names()[1])

    predictor = OfflinePredictor(predcfg)
    do_predict(
        predictor,
        "/home/jetson/tensorpack/examples/FasterRCNN/static/images/original.jpg"
    )  # this line can be commented out, but the FIRST reference after service start will take longer
Exemple #6
0
    factor = 8. / cfg.TRAIN.NUM_GPUS
    for idx, steps in enumerate(cfg.TRAIN.LR_SCHEDULE[:-1]):
        mult = 0.1**(idx + 1)
        lr_schedule.append(
            (steps * factor // stepnum, cfg.TRAIN.BASE_LR * mult))
    logger.info("Warm Up Schedule (steps, value): " + str(warmup_schedule))
    logger.info("LR Schedule (epochs, value): " + str(lr_schedule))
    train_dataflow = get_train_dataflow()
    # This is what's commonly referred to as "epochs"
    total_passes = cfg.TRAIN.LR_SCHEDULE[-1] * 8 / train_dataflow.size()
    logger.info(
        "Total passes of the training set is: {:.5g}".format(total_passes))

    # Create model and callbacks ...
    MODEL = ResNetFPNModel() if cfg.MODE_FPN else ResNetC4Model()

    callbacks = [
        PeriodicCallback(ModelSaver(max_to_keep=10,
                                    keep_checkpoint_every_n_hours=1),
                         every_k_epochs=20),
        # linear warmup
        ScheduledHyperParamSetter('learning_rate',
                                  warmup_schedule,
                                  interp='linear',
                                  step_based=True),
        ScheduledHyperParamSetter('learning_rate', lr_schedule),
        GPUMemoryTracker(),
        HostMemoryTracker(),
        ThroughputTracker(samples_per_step=cfg.TRAIN.NUM_GPUS),
        EstimatedTimeLeft(median=True),
Exemple #7
0
    def get_predictor(cls):
        """load trained model"""

        with cls.lock:
            # check if model is already loaded
            if cls.predictor:
                return cls.predictor

            # create a mask r-cnn model
            mask_rcnn_model = ResNetFPNModel()

            try:
                model_dir = os.environ["SM_MODEL_DIR"]
            except KeyError:
                model_dir = "/opt/ml/model"

            try:
                resnet_arch = os.environ["RESNET_ARCH"]
            except KeyError:
                resnet_arch = "resnet50"

            # file path to previoulsy trained mask r-cnn model
            latest_trained_model = ""
            model_search_path = os.path.join(model_dir, "model-*.index")
            for model_file in glob.glob(model_search_path):
                if model_file > latest_trained_model:
                    latest_trained_model = model_file

            trained_model = latest_trained_model[:-6]
            print(f"Using model: {trained_model}")

            cfg.MODE_FPN = True
            cfg.MODE_MASK = True
            if resnet_arch == "resnet101":
                cfg.BACKBONE.RESNET_NUM_BLOCKS = [3, 4, 23, 3]
            else:
                cfg.BACKBONE.RESNET_NUM_BLOCKS = [3, 4, 6, 3]

            cfg_prefix = "CONFIG__"
            for key, value in dict(os.environ).items():
                if key.startswith(cfg_prefix):
                    attr_name = key[len(cfg_prefix) :]
                    attr_name = attr_name.replace("__", ".")
                    value = eval(value)
                    print(f"update config: {attr_name}={value}")
                    nested_var = cfg
                    attr_list = attr_name.split(".")
                    for attr in attr_list[0:-1]:
                        nested_var = getattr(nested_var, attr)
                    setattr(nested_var, attr_list[-1], value)

            cfg.TEST.RESULT_SCORE_THRESH = cfg.TEST.RESULT_SCORE_THRESH_VIS
            cfg.DATA.BASEDIR = "/data"
            cfg.DATA.TRAIN = "coco_train2017"
            cfg.DATA.VAL = "coco_val2017"
            register_coco(cfg.DATA.BASEDIR)
            finalize_configs(is_training=False)

            # Create an inference model
            # PredictConfig takes a model, input tensors and output tensors
            input_tensors = mask_rcnn_model.get_inference_tensor_names()[0]
            output_tensors = mask_rcnn_model.get_inference_tensor_names()[1]

            cls.predictor = OfflinePredictor(
                PredictConfig(
                    model=mask_rcnn_model,
                    session_init=get_model_loader(trained_model),
                    input_names=input_tensors,
                    output_names=output_tensors,
                )
            )
            return cls.predictor
Exemple #8
0
    register_coco(cfg.DATA.BASEDIR)  # add COCO datasets to the registry
    register_ic(
        cfg.DATA.BASEDIR)  # add the demo balloon datasets to the registry

    # Setup logging ...
    is_horovod = cfg.TRAINER == 'horovod'
    if is_horovod:
        hvd.init()
    if not is_horovod or hvd.rank() == 0:
        logger.set_logger_dir(args.logdir, 'd')
    logger.info("Environment Information:\n" + collect_env_info())

    finalize_configs(is_training=True)

    # Create model
    MODEL = ResNetFPNModel() if cfg.MODE_FPN else ResNetC4Model()

    # Compute the training schedule from the number of GPUs ...
    stepnum = cfg.TRAIN.STEPS_PER_EPOCH
    # warmup is step based, lr is epoch based
    init_lr = cfg.TRAIN.WARMUP_INIT_LR * min(8. / cfg.TRAIN.NUM_GPUS, 1.)
    warmup_schedule = [(0, init_lr), (cfg.TRAIN.WARMUP, cfg.TRAIN.BASE_LR)]
    warmup_end_epoch = cfg.TRAIN.WARMUP * 1. / stepnum
    lr_schedule = [(int(warmup_end_epoch + 0.5), cfg.TRAIN.BASE_LR)]

    factor = 8. / cfg.TRAIN.NUM_GPUS
    for idx, steps in enumerate(cfg.TRAIN.LR_SCHEDULE[:-1]):
        mult = 0.1**(idx + 1)
        lr_schedule.append(
            (steps * factor // stepnum, cfg.TRAIN.BASE_LR * mult))
    logger.info("Warm Up Schedule (steps, value): " + str(warmup_schedule))
Exemple #9
0
    # add the demo balloon datasets to the registry
    register_balloon(cfg.DATA.BASEDIR)
    register_display(cfg.DATA.BASEDIR)

    # Setup logging ...
    is_horovod = cfg.TRAINER == 'horovod'
    if is_horovod:
        hvd.init()
    if not is_horovod or hvd.rank() == 0:
        logger.set_logger_dir(args.logdir, 'd')
    logger.info("Environment Information:\n" + collect_env_info())

    finalize_configs(is_training=True)

    # Create model
    MODEL = ResNetFPNModel() if cfg.MODE_FPN else ResNetC4Model()

    # Compute the training schedule from the number of GPUs ...
    stepnum = cfg.TRAIN.STEPS_PER_EPOCH
    # warmup is step based, lr is epoch based
    init_lr = cfg.TRAIN.WARMUP_INIT_LR * min(8. / cfg.TRAIN.NUM_GPUS, 1.)
    warmup_schedule = [(0, init_lr), (cfg.TRAIN.WARMUP, cfg.TRAIN.BASE_LR)]
    warmup_end_epoch = cfg.TRAIN.WARMUP * 1. / stepnum
    lr_schedule = [(int(warmup_end_epoch + 0.5), cfg.TRAIN.BASE_LR)]

    factor = 8. / cfg.TRAIN.NUM_GPUS
    for idx, steps in enumerate(cfg.TRAIN.LR_SCHEDULE[:-1]):
        mult = 0.1 ** (idx + 1)
        lr_schedule.append(
            (steps * factor // stepnum, cfg.TRAIN.BASE_LR * mult))
    logger.info("Warm Up Schedule (steps, value): " + str(warmup_schedule))
Exemple #10
0
            for dataset in cfg.DATA.VAL  #+ cfg.DATA.TRAIN
        ])
    return callbacks_


if __name__ == '__main__':

    conf_dict = data_conf_gingivitis_only  # data_conf_tooth_only

    data_config = DataConfig(image_data_basedir=None)
    data_config.pop_from_dict(conf_dict)

    args, is_horovod = config_setup(data_config=data_config)

    # Create model
    MODEL = ResNetFPNModel() if cfg.MODE_FPN else ResNetC4Model()

    import tensorflow as tf
    trainable_var_key = tf.GraphKeys.TRAINABLE_VARIABLES
    all_vars = tf.get_collection(key=trainable_var_key, scope="MLP")
    all_vars = tf.get_collection(key=trainable_var_key, scope="MLP")

    # get dataflow
    train_dataflow = get_train_dataflow()

    # setup training schedule
    warmup_schedule, lr_schedule, step_num, max_epoch = setup_training_schedule(
        train_dataflow)

    callbacks = create_callbacks(warmup_schedule,
                                 lr_schedule,