def test_layer_creation_with_float16_dtype(self):
    vocab_size = 31
    embedding_width = 27
    test_layer = on_device_embedding.OnDeviceEmbedding(
        vocab_size=vocab_size, embedding_width=embedding_width, dtype="float16")
    # Create a 2-dimensional input (the first dimension is implicit).
    sequence_length = 23
    input_tensor = tf.keras.Input(shape=(sequence_length), dtype=tf.int32)
    output_tensor = test_layer(input_tensor)

    # The output should be the same as the input, save that it has an extra
    # embedding_width dimension on the end.
    expected_output_shape = [None, sequence_length, embedding_width]
    self.assertEqual(expected_output_shape, output_tensor.shape.as_list())
    self.assertEqual(output_tensor.dtype, tf.float16)
  def test_layer_invocation_with_float16_dtype(self):
    vocab_size = 31
    embedding_width = 27
    test_layer = on_device_embedding.OnDeviceEmbedding(
        vocab_size=vocab_size, embedding_width=embedding_width, dtype="float16")
    # Create a 2-dimensional input (the first dimension is implicit).
    sequence_length = 23
    input_tensor = tf.keras.Input(shape=(sequence_length), dtype=tf.int32)
    output_tensor = test_layer(input_tensor)

    # Create a model from the test layer.
    model = tf.keras.Model(input_tensor, output_tensor)

    # Invoke the model on test data. We can't validate the output data itself
    # (the NN is too complex) but this will rule out structural runtime errors.
    batch_size = 3
    input_data = np.random.randint(
        vocab_size, size=(batch_size, sequence_length))
    output = model.predict(input_data)
    self.assertEqual(tf.float16, output.dtype)