def __init__(self, in_planes=17, out_planes=8): super(SegRefineNet, self).__init__() self.conv1 = nn.Sequential( conv2d_lrelu(in_planes, out_planes, kernel_size=3, stride=1, pad=1)) self.classif1 = nn.Conv2d(out_planes, 1, kernel_size=3, padding=1, stride=1, bias=False) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2.0 / n)) elif isinstance(m, nn.Conv3d): n = m.kernel_size[0] * m.kernel_size[1] * m.kernel_size[ 2] * m.out_channels m.weight.data.normal_(0, math.sqrt(2.0 / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.BatchNorm3d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.bias.data.zero_()
def __init__(self, inplanes, planes, stride, downsample, pad, dilation): super(BasicBlock, self).__init__() self.conv1 = conv2d_lrelu(inplanes, planes, 3, stride, pad, dilation) self.conv2 = conv2d(planes, planes, 3, 1, pad, dilation) self.downsample = downsample self.stride = stride
def __init__(self, out_planes=32): super(DispRefineNet, self).__init__() self.out_planes = out_planes self.conv2d_feature = conv2d_lrelu(in_planes=4, out_planes=self.out_planes, kernel_size=3, stride=1, pad=1, dilation=1) self.residual_astrous_blocks = nn.ModuleList() astrous_list = [1, 2, 4, 8, 1, 1] for di in astrous_list: self.residual_astrous_blocks.append( BasicBlock(self.out_planes, self.out_planes, stride=1, downsample=None, pad=1, dilation=di)) self.conv2d_out = nn.Conv2d(self.out_planes, 1, kernel_size=3, stride=1, padding=1) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2.0 / n)) elif isinstance(m, nn.Conv3d): n = m.kernel_size[0] * m.kernel_size[1] * m.kernel_size[ 2] * m.out_channels m.weight.data.normal_(0, math.sqrt(2.0 / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.BatchNorm3d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.bias.data.zero_() return