Exemple #1
0
class Pretrained_Inference(Trainer):
	def __init__(self, separator, name, **kwargs):
		super(Pretrained_Inference, self).__init__(trainer_type=name, **kwargs)
		self.separator = separator

	def build(self):
		self.args.update({'pretraining':True})
		self.model = Adapt(**self.args)
		self.model.create_saver()
		self.model.restore_model(self.args['model_folder'])
Exemple #2
0
config_model["type"] = "DPCL_finetuning"
learning_rate = 0.001 
batch_size = 2
config_model["chunk_size"] = chunk_size
config_model["alpha"] = learning_rate
config_model["batch_size"] = batch_size
folder = 'DPCL_finetuning'



model = Adapt(config_model=config_model, pretraining=False)
model.create_saver()

path = os.path.join(config.model_root, 'log', 'DPCL_train_front')
model.restore_model(path, full_id)

model.connect_front_back_to_separator(DPCL)

with model.graph.as_default():
    model.create_saver()
    model.restore_model(path, full_id)
    # model.freeze_front()
    model.optimize
    model.tensorboard_init()

init = model.non_initialized_variables()

model.sess.run(init)

print 'Total name :' 
Exemple #3
0
####

config_model["type"] = "L41_finetuning"
learning_rate = 0.001
batch_size = 64
config_model["chunk_size"] = chunk_size
config_model["alpha"] = learning_rate
config_model["batch_size"] = batch_size

model = Adapt(config_model=config_model, pretraining=False)

with model.graph.as_default():
    model.connect_front(L41Model)
    var_list = [v for v in tf.global_variables() if ('front' in v.name)]
    model.create_saver(var_list)
    model.restore_model(path_adapt, full_id_adapt)
    model.sepNet.prediction
    model.sepNet.separate
    model.sepNet.output = model.sepNet.enhance
    var_list = [
        v for v in tf.global_variables()
        if ('prediction' in v.name or 'speaker_centroids' in v.name
            or 'enhance' in v.name)
    ]
    model.create_saver(var_list)
    model.restore_model(path, full_id)
    model.separator
    model.back
    var_list = [v for v in tf.global_variables() if ('back/' in v.name)]
    model.create_saver(var_list)
    model.restore_model(path_adapt, full_id_adapt)