def model_init_par():
    # model
    backbone = resnet50()
    classifier = BaseClassifier(nattr=6)
    model = FeatClassifier(backbone, classifier)

    # load
    checkpoint = torch.load(
        '/home/sohaibrabbani/PycharmProjects/Strong_Baseline_of_Pedestrian_Attribute_Recognition/exp_result/custom/custom/img_model/ckpt_max.pth'
    )

    # unfolded load
    # state_dict = checkpoint['state_dicts']
    # new_state_dict = OrderedDict()
    # for k, v in state_dict.items():
    #     name = k[7:]
    #     new_state_dict[name] = v
    # model.load_state_dict(new_state_dict)
    # one-liner load
    # if torch.cuda.is_available():
    #     model = torch.nn.DataParallel(model).cuda()
    #     model.load_state_dict(checkpoint['state_dicts'])
    # else:
    model.load_state_dict({
        k.replace('module.', ''): v
        for k, v in checkpoint['state_dicts'].items()
    })
    # cuda eval
    model.cuda()
    model.eval()

    # valid_transform
    height, width = 256, 192
    normalize = T.Normalize(mean=[0.485, 0.456, 0.406],
                            std=[0.229, 0.224, 0.225])
    valid_transform = T.Compose(
        [T.Resize((height, width)),
         T.ToTensor(), normalize])
    return model, valid_transform
def model_init_par():
    # model
    backbone = resnet50()
    classifier = BaseClassifier(nattr=6)
    model = FeatClassifier(backbone, classifier)

    # load
    checkpoint = torch.load(
       '/home/deep/PycharmProjects/pedestrian-attribute-recognition/exp_result/custom/custom/img_model/ckpt_max.pth')
    model.load_state_dict({k.replace('module.', ''): v for k, v in checkpoint['state_dicts'].items()})
    # cuda eval
    model.cuda()
    model.eval()

    # valid_transform
    height, width = 256, 192
    normalize = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    valid_transform = T.Compose([
        T.Resize((height, width)),
        T.ToTensor(),
        normalize
    ])
    return model, valid_transform
Exemple #3
0
def main(args):
    visenv_name = args.dataset
    exp_dir = os.path.join('exp_result', args.dataset)
    model_dir, log_dir = get_model_log_path(exp_dir, visenv_name)
    stdout_file = os.path.join(log_dir, f'stdout_{time_str()}.txt')

    if args.redirector:
        print('redirector stdout')
        ReDirectSTD(stdout_file, 'stdout', False)

    pprint.pprint(OrderedDict(args.__dict__))

    print('-' * 60)
    print(f'use GPU{args.device} for training')
    print(
        f'train set: {args.dataset} {args.train_split}, test set: {args.valid_split}'
    )

    train_tsfm, valid_tsfm = get_transform(args)
    print(train_tsfm)

    train_set = AttrDataset(args=args,
                            split=args.train_split,
                            transform=train_tsfm)

    train_loader = DataLoader(
        dataset=train_set,
        batch_size=args.batchsize,
        shuffle=True,
        num_workers=4,
        pin_memory=True,
    )

    valid_set = AttrDataset(args=args,
                            split=args.valid_split,
                            transform=valid_tsfm)

    valid_loader = DataLoader(
        dataset=valid_set,
        batch_size=args.batchsize,
        shuffle=False,
        num_workers=4,
        pin_memory=True,
    )

    print(f'{args.train_split} set: {len(train_loader.dataset)}, '
          f'{args.valid_split} set: {len(valid_loader.dataset)}, '
          f'attr_num : {train_set.attr_num}')

    backbone = resnet50()
    classifier = BaseClassifier(nattr=35)
    model = FeatClassifier(backbone, classifier)

    if torch.cuda.is_available():
        model = torch.nn.DataParallel(model).cuda()

    print("reloading pretrained models")

    exp_dir = os.path.join('exp_result', args.dataset)
    model_path = os.path.join(exp_dir, args.dataset, 'img_model')
    model.load_state_dict(
        torch.load(
            '/home/sohaibrabbani/PycharmProjects/Strong_Baseline_of_Pedestrian_Attribute_Recognition/pedestrian_model/rap2_ckpt_max.pth'
        )['state_dicts'])
    # model = get_reload_weight(model_path, model)

    model.eval()
    preds_probs = []
    gt_list = []
    with torch.no_grad():
        for step, (imgs, gt_label, imgname) in enumerate(tqdm(valid_loader)):
            imgs = imgs.cuda()
            gt_label = gt_label.cuda()
            gt_list.append(gt_label.cpu().numpy())
            gt_label[gt_label == -1] = 0
            valid_logits = model(imgs)
            valid_probs = torch.sigmoid(valid_logits)
            preds_probs.append(valid_probs.cpu().numpy())

    gt_label = np.concatenate(gt_list, axis=0)
    preds_probs = np.concatenate(preds_probs, axis=0)

    valid_result = get_pedestrian_metrics(gt_label, preds_probs)

    print(
        f'Evaluation on test set, \n',
        'ma: {:.4f},  pos_recall: {:.4f} , neg_recall: {:.4f} \n'.format(
            valid_result.ma, np.mean(valid_result.label_pos_recall),
            np.mean(valid_result.label_neg_recall)),
        'Acc: {:.4f}, Prec: {:.4f}, Rec: {:.4f}, F1: {:.4f}'.format(
            valid_result.instance_acc, valid_result.instance_prec,
            valid_result.instance_recall, valid_result.instance_f1))
    def __init__(self):
        device = torch.device('cpu')
        FORCE_TO_CPU = True
        parser = argument_parser()
        args = parser.parse_args(['PETA', '--model=dpn107'])

        visenv_name = 'PETA'
        exp_dir = os.path.join('exp_result', visenv_name)
        model_dir, log_dir = get_model_log_path(exp_dir, visenv_name)
        stdout_file = os.path.join(log_dir, f'stdout_{time_str()}.txt')
        save_model_path = os.path.join(
            model_dir, 'ckpt_max_e0384293_2020-09-17_18-35-21.pth')

        if args.redirector:
            print('redirector stdout')
            ReDirectSTD(stdout_file, 'stdout', False)

        pprint.pprint(OrderedDict(args.__dict__))

        print('-' * 60)
        print(f'use GPU{args.device} for training')

        _, predict_tsfm = get_transform(args)

        valid_set = AttrDataset(args=args,
                                split=args.valid_split,
                                transform=predict_tsfm)

        args.att_list = valid_set.attr_id

        backbone = getattr(sys.modules[__name__], args.model)()

        if "dpn68" in args.model:
            net_parameter = 832
        elif "dpn" in args.model:
            net_parameter = 2688
        elif "densenet" in args.model:
            net_parameter = 1024
        else:
            net_parameter = 2048

        classifier = BaseClassifier(netpara=net_parameter,
                                    nattr=valid_set.attr_num)
        model = FeatClassifier(backbone, classifier)

        if torch.cuda.is_available() and not FORCE_TO_CPU:
            model = torch.nn.DataParallel(model).cuda()
            ckpt = torch.load(save_model_path)
            print(f'Model is served with GPU ')
        else:
            model = torch.nn.DataParallel(model)
            ckpt = torch.load(save_model_path,
                              map_location=torch.device('cpu'))
            print(f'Model is served with CPU ')

        model.load_state_dict(ckpt['state_dicts'])
        model.eval()

        # from torchsummary import summary
        # summary(model, input_size=(3, 256, 192))

        print('Total number of parameters: ',
              sum(p.numel() for p in model.parameters() if p.requires_grad))

        self.args = args
        self.predict_tsfm = predict_tsfm
        self.model = model
Exemple #5
0
 _, predict_tsfm = get_transform(args)
 valid_set = AttrDataset(args=args, split=args.valid_split, transform=predict_tsfm)
 
 args.att_list = valid_set.attr_id
 
 backbone = getattr(sys.modules[__name__], args.model)()
 if "dpn68" in args.model:
     net_parameter = 832
 elif "dpn" in args.model:
     net_parameter = 2688
 elif "densenet" in args.model:
     net_parameter = 1024
 else:
     net_parameter = 2048
     
 classifier = BaseClassifier(netpara=net_parameter, nattr=valid_set.attr_num)
 model = FeatClassifier(backbone, classifier)
 
 if torch.cuda.is_available() and not FORCE_TO_CPU:
     model = torch.nn.DataParallel(model).cuda()
     ckpt = torch.load(save_model_path)
     print(f'Model is served with GPU ')
 else:
     model = torch.nn.DataParallel(model)
     ckpt = torch.load(save_model_path, map_location=torch.device('cpu'))
     print(f'Model is served with CPU ')
 
 model.load_state_dict(ckpt['state_dicts'])
 model.eval()
 
 macs, params = get_model_complexity_info(model, (3, 256, 192),
Exemple #6
0
def main(args):
    visenv_name = args.dataset
    exp_dir = os.path.join(args.save_path, args.dataset)
    model_dir, log_dir = get_model_log_path(exp_dir, visenv_name)
    stdout_file = os.path.join(log_dir, f'stdout_{time_str()}.txt')
    save_model_path = os.path.join(model_dir, 'ckpt_max.pth')
    os.environ['CUDA_VISIBLE_DEVICES'] = args.device
    if args.redirector:
        print('redirector stdout')
        ReDirectSTD(stdout_file, 'stdout', False)

    pprint.pprint(OrderedDict(args.__dict__))

    print('-' * 60)
    print(f'use GPU{args.device} for training')
    print(f'train set: {args.dataset} {args.train_split}, test set: {args.valid_split}')

    #train_tsfm, valid_tsfm = get_transform(args)
    train_tsfm, valid_tsfm = get_transform(args)
    print(train_tsfm)

    #train_set = AttrDataset(args=args, split=args.train_split, transform=train_tsfm)
    train_set = AttrDataset(args=args, split=args.train_split, transform=train_tsfm, target_transform=None, Type='train' )
    
    train_loader = DataLoader(
        dataset=train_set,
        batch_size=args.batchsize,
        shuffle=True,
        num_workers=4,
        drop_last=True,
        pin_memory=True,
    )
    #valid_set = AttrDataset(args=args, split=args.valid_split, transform=valid_tsfm)
    valid_set = AttrDataset(args=args, split=args.valid_split, transform=valid_tsfm, target_transform=None, Type='val')
    
    valid_loader = DataLoader(
        dataset=valid_set,
        batch_size=args.batchsize,
        shuffle=False,
        num_workers=4,
        drop_last=True,
        pin_memory=True,
    )

    print(f'{args.train_split} set: {len(train_loader.dataset)}, '
          f'{args.valid_split} set: {len(valid_loader.dataset)}, '
          f'attr_num : {train_set.attr_num}')

    labels = train_set.label
    sample_weight = labels.mean(0)

    #backbone = resnet50()
    if args.model_name == 'resnet50':
        backbone = resnet50()
    if args.model_name == 'resnet18':
        backbone = resnet18()
    if args.model_name == 'resnet18_stn':
        backbone = resnet18_stn()       
    if args.model_name == 'resnet_depth':
        backbone = resnet_depth()
    if args.model_name == 'resnet18_transformer':
        backbone = resnet18_transformer()        
    if args.model_name == 'resnet50_dynamic_se':
        backbone = resnet50_dynamic_se()
    if args.model_name == 'resnet18_dynamic_se':
        backbone = resnet18_dynamic_se()
    if args.model_name == 'resnet18_replace_se':
        backbone = resnet18_replace_se()
    if args.model_name == 'resnet18_se':
        backbone = resnet18_se()
    if args.model_name == 'resnet34':
        backbone = resnet34()
    if args.model_name == 'resnet18_group_se':
        backbone = resnet18_group_se()
    if args.model_name == 'resnet18_vit':
        backbone = resnet18_vit()
    if args.model_name == 'resnet18_vit_v2':
        backbone = resnet18_vit_v2()
    if args.model_name == 'resnet18_vit_v3':
        backbone = resnet18_vit_v3()
    if args.model_name == 'resnet18_vit_v5':
        backbone = resnet18_vit_v5()
    if args.model_name == 'resnet18_energy_vit':
        backbone = resnet18_energy_vit()
    if args.model_name == 'resnet18_vit_split':
        backbone = resnet18_vit_split(num_classes = train_set.attr_num)
    if args.model_name == 'inception_self':
        backbone = inception_self()  
    if args.model_name == 'spatial_modulator':
        backbone = spatial_modulator()
    if args.model_name == 'fusion_concat':
        backbone = fusion_concat()         
    print('have generated the model')    
    classifier = BaseClassifier(nattr=train_set.attr_num)
    model = FeatClassifier(backbone, classifier)
    
    print('Number of model parameters: {}'.format(
        sum([p.data.nelement() for p in model.parameters()])))
    print('')
    
    #if torch.cuda.is_available():
    model = torch.nn.DataParallel(model).cuda()
    #for k, v in model.state_dict().items():
    #    print(k)
    '''
    model_dict = {}
    state_dict = model.state_dict()
    pretrain_dict = torch.load('/home/pengqy/paper/resnet18_2/PETA/PETA/img_model/ckpt_max.pth')['state_dicts']
    for k, v in pretrain_dict.items():
        # print('%%%%% ', k)
        if k in state_dict:
            if k.startswith('module.backbone.conv1'):
                #pdb.set_trace()
                model_dict[k] = v       
            elif k.startswith('module.backbone.bn1'):
                model_dict[k] = v          
            elif k.startswith('module.backbone.layer'):
                model_dict[k] = v
            elif k.startswith('module.classifier'):
                model_dict[k] = v
            
            #elif k.startswith('module.backbone.spa_conv_0'):
            #    model_dict[k] = v
            #elif k.startswith('module.backbone.spa_bn_0'):
            #    model_dict[k] = v 
            #elif k.startswith('module.classifier'):
            #    model_dict[k] = v
            #elif k.startswith('module.classifier'):
            #    model_dict[k] = v   
              
    #pdb.set_trace()       
         
    state_dict.update(model_dict) 
    model.load_state_dict(state_dict)
    '''
    criterion = CEL_Sigmoid(sample_weight)
   
  
    
    param_groups = [{'params': model.module.finetune_params(), 'lr':0.01},
                   {'params': model.module.fresh_params(), 'lr':0.1}]
    
    optimizer = torch.optim.SGD(param_groups, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=False)
    lr_scheduler = ReduceLROnPlateau(optimizer, factor=0.1, patience=4)
    loss = args.loss
    best_metric, epoch = trainer(epoch=args.train_epoch,
                                 model=model,
                                 train_loader=train_loader,
                                 valid_loader=valid_loader,
                                 criterion=criterion,
                                 optimizer=optimizer,
                                 lr_scheduler=lr_scheduler,
                                 path=save_model_path,
                                 loss =loss)

    print(f'{visenv_name},  best_metrc : {best_metric} in epoch{epoch}')
Exemple #7
0
def main(args):
    visenv_name = args.dataset
    exp_dir = os.path.join(args.save_path, args.dataset)
    model_dir, log_dir = get_model_log_path(exp_dir, visenv_name)
    stdout_file = os.path.join(log_dir, f'stdout_{time_str()}.txt')
    save_model_path = os.path.join(model_dir, 'ckpt_max.pth')
    os.environ['CUDA_VISIBLE_DEVICES'] = args.device
    if args.redirector:
        print('redirector stdout')
        ReDirectSTD(stdout_file, 'stdout', False)

    pprint.pprint(OrderedDict(args.__dict__))

    print('-' * 60)
    print(f'use GPU{args.device} for training')
    print(
        f'train set: {args.dataset} {args.train_split}, test set: {args.valid_split}'
    )

    #train_tsfm, valid_tsfm = get_transform(args)
    train_tsfm, valid_tsfm = get_transform(args)
    print(train_tsfm)

    #train_set = AttrDataset(args=args, split=args.train_split, transform=train_tsfm)
    train_set = AttrDataset(args=args,
                            split=args.train_split,
                            transform=train_tsfm)

    train_loader = DataLoader(
        dataset=train_set,
        batch_size=args.batchsize,
        shuffle=True,
        num_workers=4,
        pin_memory=True,
    )
    #valid_set = AttrDataset(args=args, split=args.valid_split, transform=valid_tsfm)
    valid_set = AttrDataset(args=args,
                            split=args.valid_split,
                            transform=valid_tsfm)

    valid_loader = DataLoader(
        dataset=valid_set,
        batch_size=args.batchsize,
        shuffle=False,
        num_workers=4,
        pin_memory=True,
    )

    print(f'{args.train_split} set: {len(train_loader.dataset)}, '
          f'{args.valid_split} set: {len(valid_loader.dataset)}, '
          f'attr_num : {train_set.attr_num}')

    labels = train_set.label
    sample_weight = labels.mean(0)

    #backbone = resnet50()
    if args.model_name == 'resnet50':
        backbone = resnet50()
    if args.model_name == 'resnet18':
        backbone = resnet18()
    if args.model_name == 'resnet50_dynamic_se':
        backbone = resnet50_dynamic_se()
    if args.model_name == 'resnet18_dynamic_se':
        backbone = resnet18_dynamic_se()
    if args.model_name == 'resnet18_replace_se':
        backbone = resnet18_replace_se()
    if args.model_name == 'resnet18_se':
        backbone = resnet18_se()
    if args.model_name == 'resnet34':
        backbone = resnet34()

    if args.model_name == 'acnet':
        backbone = resnet18_acnet(num_classes=train_set.attr_num)
    print('have generated the model')
    classifier = BaseClassifier(nattr=train_set.attr_num)
    classifier_depth = BaseClassifier(nattr=train_set.attr_num)
    model = FeatClassifier(backbone, classifier)

    print('Number of model parameters: {}'.format(
        sum([p.data.nelement() for p in model.parameters()])))
    print('')

    #if torch.cuda.is_available():
    model = torch.nn.DataParallel(model).cuda()

    criterion = CEL_Sigmoid(sample_weight)

    param_groups = [{
        'params': model.module.finetune_params(),
        'lr': args.lr_ft
    }, {
        'params': model.module.fresh_params(),
        'lr': args.lr_new
    }]
    optimizer = torch.optim.SGD(param_groups,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay,
                                nesterov=False)
    lr_scheduler = ReduceLROnPlateau(optimizer, factor=0.1, patience=4)
    loss = args.loss
    best_metric, epoch = trainer(epoch=args.train_epoch,
                                 model=model,
                                 train_loader=train_loader,
                                 valid_loader=valid_loader,
                                 criterion=criterion,
                                 optimizer=optimizer,
                                 lr_scheduler=lr_scheduler,
                                 path=save_model_path,
                                 loss=loss)

    print(f'{visenv_name},  best_metrc : {best_metric} in epoch{epoch}')
Exemple #8
0
def main(args):
    os.environ['CUDA_VISIBLE_DEVICES'] = args.device
    print('load the model from:   ' + args.save_path)
    exp_dir = os.path.join(args.save_path, args.dataset, args.dataset,
                           'img_model/ckpt_max.pth')
    train_tsfm, valid_tsfm = get_transform(args)

    #valid_set = AttrDataset(args=args, split=args.valid_split, transform=valid_tsfm)
    valid_set = AttrDataset(args=args,
                            split=args.valid_split,
                            transform=valid_tsfm,
                            target_transform=None,
                            Type='val')

    valid_loader = DataLoader(
        dataset=valid_set,
        batch_size=args.batchsize,
        shuffle=False,
        num_workers=0,
        pin_memory=True,
    )
    print('have generated dataset')

    if args.model_name == 'resnet50':
        backbone = resnet50()
    if args.model_name == 'resnet18':
        backbone = resnet18()
    if args.model_name == 'resnet18_consistent':
        backbone = resnet18_consistent()
    if args.model_name == 'resnet18_stn':
        backbone = resnet18_stn()
    if args.model_name == 'resnet18_autoencoder':
        backbone = resnet18_autoencoder()
    if args.model_name == 'resnet50_dynamic_se':
        backbone = resnet50_dynamic_se()
    if args.model_name == 'resnet18_dynamic_se':
        backbone = resnet18_dynamic_se()
    if args.model_name == 'resnet18_group_se':
        backbone = resnet18_group_se()
    if args.model_name == 'resnet18_vit':
        backbone = resnet18_vit()
    if args.model_name == 'resnet18_vit_v2':
        backbone = resnet18_vit_v2()
    if args.model_name == 'resnet18_vit_v3':
        backbone = resnet18_vit_v3()
    if args.model_name == 'resnet18_vit_v4':
        backbone = resnet18_vit_v4()
    if args.model_name == 'resnet34':
        backbone = resnet34()
    if args.model_name == 'resnet18_vit_split':
        backbone = resnet18_vit_split(num_classes=valid_set.attr_num)
    if args.model_name == 'resnet18_energy_vit':
        backbone = resnet18_energy_vit(num_classes=valid_set.attr_num)
    if args.model_name == 'resnet_depth':
        backbone = resnet_depth(num_classes=valid_set.attr_num)
    if args.model_name == 'spatial_modulator':
        backbone = spatial_modulator()
    if args.model_name == 'fusion_concat':
        backbone = fusion_concat()
    classifier = BaseClassifier(nattr=valid_set.attr_num)
    model = FeatClassifier(backbone, classifier)

    if torch.cuda.is_available():
        model = torch.nn.DataParallel(model).cuda()
        #model = model.cuda()

    #loading state_dict from the model
    model.load_state_dict(torch.load(exp_dir)['state_dicts'])

    #load_ckpt(model, exp_dir)
    print('have load from the pretrained model')

    #start eval
    labels = valid_set.label
    sample_weight = labels.mean(0)
    criterion = CEL_Sigmoid(sample_weight)
    valid_loss, valid_gt, valid_probs = valid_trainer(
        model=model,
        valid_loader=valid_loader,
        criterion=criterion,
    )
    valid_result = get_pedestrian_metrics(valid_gt, valid_probs)

    #print result
    print(
        f'Evaluation on test set, \n',
        'ma: {:.4f},  pos_recall: {:.4f} , neg_recall: {:.4f} \n'.format(
            valid_result.ma, np.mean(valid_result.label_pos_recall),
            np.mean(valid_result.label_neg_recall)),
        'Acc: {:.4f}, Prec: {:.4f}, Rec: {:.4f}, F1: {:.4f}'.format(
            valid_result.instance_acc, valid_result.instance_prec,
            valid_result.instance_recall, valid_result.instance_f1))

    #for index in range(5, 35):
    for index in range(len(valid_set.attr_name)):
        print(f'{valid_set.attr_name[index]}')
        print(
            f'pos recall: {valid_result.label_pos_recall[index]}  neg_recall: {valid_result.label_neg_recall[index]}  ma: {valid_result.label_ma[index]}'
        )
Exemple #9
0
def main(args):
    visenv_name = args.dataset
    exp_dir = os.path.join('exp_result', args.dataset)
    model_dir, log_dir = get_model_log_path(exp_dir, visenv_name)
    stdout_file = os.path.join(log_dir, f'stdout_{time_str()}.txt')
    save_model_path = os.path.join(model_dir, 'ckpt_max.pth')

    if args.redirector:
        print('redirector stdout')
        ReDirectSTD(stdout_file, 'stdout', False)

    pprint.pprint(OrderedDict(args.__dict__))

    print('-' * 60)
    print(f'use GPU{args.device} for training')
    print(f'train set: {args.dataset} {args.train_split}, test set: {args.valid_split}')

    train_tsfm, valid_tsfm = get_transform(args)
    print(train_tsfm)

    train_set = AttrDataset(args=args, split=args.train_split, transform=train_tsfm)

    train_loader = DataLoader(
        dataset=train_set,
        batch_size=args.batchsize,
        shuffle=True,
        num_workers=0,
        pin_memory=True,
    )
    valid_set = AttrDataset(args=args, split=args.valid_split, transform=valid_tsfm)

    valid_loader = DataLoader(
        dataset=valid_set,
        batch_size=args.batchsize,
        shuffle=False,
        num_workers=0,
        pin_memory=True,
    )

    print(f'{args.train_split} set: {len(train_loader.dataset)}, '
          f'{args.valid_split} set: {len(valid_loader.dataset)}, '
          f'attr_num : {train_set.attr_num}')

    labels = train_set.label
    # sample_weight = labels.mean(0)
    # sample_weight = labels[labels!=2].reshape((labels.shape[0], labels.shape[1])).mean(0)
    sample_weight = np.nanmean(np.where(labels!=2,labels,np.nan), axis=0)

    backbone = getattr(sys.modules[__name__], args.model)()
    
    if "dpn68" in args.model:
        net_parameter = 832
    elif "dpn" in args.model:
        net_parameter = 2688
    elif "densenet" in args.model:
        net_parameter = 1024
    else:
        net_parameter = 2048
    
    classifier = BaseClassifier(netpara=net_parameter, nattr=train_set.attr_num)
    model = FeatClassifier(backbone, classifier)

    if torch.cuda.is_available():
        model = torch.nn.DataParallel(model).cuda()

    criterion = CEL_Sigmoid(sample_weight)

    if torch.cuda.is_available():
        param_groups = [{'params': model.module.finetune_params(), 'lr': args.lr_ft},
                        {'params': model.module.fresh_params(), 'lr': args.lr_new}]
    else:
        param_groups = [{'params': model.finetune_params(), 'lr': args.lr_ft},
                        {'params': model.fresh_params(), 'lr': args.lr_new}]
    optimizer = torch.optim.SGD(param_groups, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=False)
    lr_scheduler = ReduceLROnPlateau(optimizer, factor=0.1, patience=4)

    best_metric, epoch = trainer(epoch=args.train_epoch,
                                 model=model,
                                 train_loader=train_loader,
                                 valid_loader=valid_loader,
                                 criterion=criterion,
                                 optimizer=optimizer,
                                 lr_scheduler=lr_scheduler,
                                 path=save_model_path)

    print(f'{visenv_name},  best_metrc : {best_metric} in epoch{epoch}')
def main(args):
    visenv_name = args.dataset
    exp_dir = os.path.join('exp_result', args.dataset)
    model_dir, log_dir = get_model_log_path(exp_dir, visenv_name)
    stdout_file = os.path.join(log_dir, f'stdout_{time_str()}.txt')
    save_model_path = os.path.join(model_dir, 'ckpt_max.pth')

    if args.redirector:
        print('redirector stdout')
        ReDirectSTD(stdout_file, 'stdout', False)

    pprint.pprint(OrderedDict(args.__dict__))

    os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
    os.environ['CUDA_VISIBLE_DEVICES'] = str(args.device)

    print('-' * 60)
    print(f'use GPU{args.device} for training')
    print(
        f'train set: {args.dataset} {args.train_split}, test set: {args.valid_split}'
    )

    train_tsfm, valid_tsfm = get_transform(args)
    print(train_tsfm)

    train_set = AttrDataset(args=args,
                            split=args.train_split,
                            transform=train_tsfm)

    train_loader = DataLoader(
        dataset=train_set,
        batch_size=args.batchsize,
        shuffle=True,
        num_workers=4,
        pin_memory=True,
    )
    valid_set = AttrDataset(args=args,
                            split=args.valid_split,
                            transform=valid_tsfm)

    valid_loader = DataLoader(
        dataset=valid_set,
        batch_size=args.batchsize,
        shuffle=False,
        num_workers=4,
        pin_memory=True,
    )

    print(f'{args.train_split} set: {len(train_loader.dataset)}, '
          f'{args.valid_split} set: {len(valid_loader.dataset)}, '
          f'attr_num : {train_set.attr_num}')

    labels = train_set.label
    sample_weight = labels.mean(0)

    backbone = resnet50()
    classifier = BaseClassifier(nattr=train_set.attr_num)
    model = FeatClassifier(backbone, classifier)

    if torch.cuda.is_available():
        model = torch.nn.DataParallel(model).cuda()

    criterion = CEL_Sigmoid(sample_weight)

    param_groups = [{
        'params': model.module.finetune_params(),
        'lr': args.lr_ft
    }, {
        'params': model.module.fresh_params(),
        'lr': args.lr_new
    }]
    optimizer = torch.optim.SGD(param_groups,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay,
                                nesterov=False)
    lr_scheduler = MultiStepLR(optimizer, args.lr_scheduler_steps, gamma=0.1)

    best_metric, epoch = trainer(epoch=args.train_epoch,
                                 model=model,
                                 train_loader=train_loader,
                                 valid_loader=valid_loader,
                                 criterion=criterion,
                                 optimizer=optimizer,
                                 lr_scheduler=lr_scheduler,
                                 path=save_model_path)

    print(f'{visenv_name},  best_metrc : {best_metric} in epoch{epoch}')
    torch.save(model.state_dict(),
               os.path.join(model_dir, f'{time_str()}_model.pth.tar'))
Exemple #11
0
def main(args):
    visenv_name = args.dataset
    exp_dir = os.path.join('exp_result', args.dataset)
    model_dir, log_dir = get_model_log_path(exp_dir, visenv_name)
    stdout_file = os.path.join(log_dir, f'stdout_{time_str()}.txt')
    save_model_path = os.path.join(model_dir, 'ckpt_max.pth')

    if args.redirector:
        print('redirector stdout')
        ReDirectSTD(stdout_file, 'stdout', False)

    pprint.pprint(OrderedDict(args.__dict__))

    print('-' * 60)
    print(f'use GPU{args.device} for training')
    print(
        f'train set: {args.dataset} {args.train_split}, test set: {args.valid_split}'
    )

    train_tsfm, valid_tsfm = get_transform(args)
    print(train_tsfm)

    train_set = AttrDataset(args=args,
                            split=args.train_split,
                            transform=train_tsfm)

    train_loader = DataLoader(
        dataset=train_set,
        batch_size=args.batchsize,
        shuffle=True,
        num_workers=4,
        pin_memory=True,
    )
    valid_set = AttrDataset(args=args,
                            split=args.valid_split,
                            transform=valid_tsfm)

    valid_loader = DataLoader(
        dataset=valid_set,
        batch_size=args.batchsize,
        shuffle=False,
        num_workers=4,
        pin_memory=True,
    )

    print(f'{args.train_split} set: {len(train_loader.dataset)}, '
          f'{args.valid_split} set: {len(valid_loader.dataset)}, '
          f'attr_num : {train_set.attr_num}')

    labels = train_set.label
    sample_weight = labels.mean(0)

    if args.model == 'resnet18':
        backbone = resnet18()
    elif args.model == 'resnet34':
        backbone = resnet34()
    elif args.model == 'resnet50':
        backbone = resnet50()
    elif args.model == 'resnet101':
        backbone = resnet101()
    elif args.model == 'resnet152':
        backbone = resnet50()
    else:
        raise ValueError('No Defined Model!')

    classifier = BaseClassifier(nattr=train_set.attr_num)
    model = FeatClassifier(backbone, classifier)

    if torch.cuda.is_available():
        model = torch.nn.DataParallel(model).cuda()

    criterion = CEL_Sigmoid(sample_weight)

    param_groups = [{
        'params': model.module.finetune_params(),
        'lr': args.lr_ft
    }, {
        'params': model.module.fresh_params(),
        'lr': args.lr_new
    }]
    optimizer = torch.optim.SGD(param_groups,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay,
                                nesterov=False)
    lr_scheduler = ReduceLROnPlateau(optimizer, factor=0.1, patience=4)

    best_metric, epoch = trainer(epoch=args.train_epoch,
                                 model=model,
                                 train_loader=train_loader,
                                 valid_loader=valid_loader,
                                 criterion=criterion,
                                 optimizer=optimizer,
                                 lr_scheduler=lr_scheduler,
                                 path=save_model_path)

    print(f'{visenv_name},  best_metrc : {best_metric} in epoch{epoch}')
def main(args):
    visenv_name = args.dataset
    exp_dir = os.path.join('exp_result', args.dataset)
    model_dir, log_dir = get_model_log_path(exp_dir, visenv_name)

    # Added for logging purposes
    user = getpass.getuser()
    fixed_time_str = time_str()
    stdout_file = os.path.join(
        log_dir, "_".join(['stdout', user, f'{fixed_time_str}.txt']))
    save_model_path = os.path.join(
        model_dir, "_".join(['ckpt_max', user, f'{fixed_time_str}.pth']))
    trackitems_dir = os.path.join(
        log_dir, "_".join(['trackitems', user, f'{fixed_time_str}.txt']))

    if args.redirector:
        print('redirector stdout')
        ReDirectSTD(stdout_file, 'stdout', False)

    pprint.pprint(OrderedDict(args.__dict__))

    print('-' * 60)
    print(f'use GPU{args.device} for training')
    print(
        f'train set: {args.dataset} {args.train_split}, test set: {args.valid_split}'
    )

    train_tsfm, valid_tsfm = get_transform(args)
    print(train_tsfm)

    #train_set = AttrDataset(args=args, split=args.train_split, transform=train_tsfm)
    train_set = AttrDataset_new(args=args,
                                split=args.train_split,
                                transformation_dict=args.train_transform)

    train_loader = DataLoader(
        dataset=train_set,
        batch_size=args.batchsize,
        shuffle=True,
        num_workers=8,
        pin_memory=True,
    )
    #valid_set = AttrDataset(args=args, split=args.valid_split, transform=valid_tsfm)
    valid_set = AttrDataset_new(args=args,
                                split=args.valid_split,
                                transformation_dict=args.valid_transform)

    valid_loader = DataLoader(
        dataset=valid_set,
        batch_size=args.batchsize,
        shuffle=False,
        num_workers=8,
        pin_memory=True,
    )

    print(f'{args.train_split} set: {len(train_loader.dataset)}, '
          f'{args.valid_split} set: {len(valid_loader.dataset)}, '
          f'attr_num : {train_set.attr_num}')

    labels = train_set.label
    # sample_weight = labels.mean(0)
    sample_weight = np.nanmean(np.where(labels != 2, labels, np.nan), axis=0)

    backbone = getattr(sys.modules[__name__], args.model)()

    if "dpn68" in args.model:
        net_parameter = 832
    elif "dpn" in args.model:
        net_parameter = 2688
    elif "densenet" in args.model:
        net_parameter = 1024
    else:
        net_parameter = 2048

    classifier = BaseClassifier(netpara=net_parameter,
                                nattr=train_set.attr_num)
    model = FeatClassifier(backbone, classifier)

    if torch.cuda.is_available():
        model = torch.nn.DataParallel(model).cuda()

    criterion = CEL_Sigmoid(sample_weight)

    if torch.cuda.is_available():
        param_groups = [{
            'params': model.module.finetune_params(),
            'lr': args.lr_ft
        }, {
            'params': model.module.fresh_params(),
            'lr': args.lr_new
        }]
    else:
        param_groups = [{
            'params': model.finetune_params(),
            'lr': args.lr_ft
        }, {
            'params': model.fresh_params(),
            'lr': args.lr_new
        }]
    optimizer = torch.optim.SGD(param_groups,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay,
                                nesterov=False)
    lr_scheduler = ReduceLROnPlateau(optimizer, factor=0.1, patience=4)

    # Added for logging purposes
    with open(trackitems_dir, "a") as f:
        code, line_no = inspect.getsourcelines(get_transform)
        for line in code:
            f.write(str(line))
        f.write(str("\n\n"))

        f.write(str(args.__dict__))
        f.write(str("\n\n"))

        f.write(str(lr_scheduler.__dict__))
        f.write(str("\n\n"))

        model_str = str(model).lower()
        have_dropout = 'dropout' in model_str
        f.write('dropout: %s' % (have_dropout))
        f.write(str("\n\n"))

        have_leaky_relu = 'leaky_relu' in model_str
        f.write('leaky_relu: %s' % (have_leaky_relu))
        f.write(str("\n\n"))

    best_metric, epoch = trainer(epoch=args.train_epoch,
                                 model=model,
                                 train_loader=train_loader,
                                 valid_loader=valid_loader,
                                 criterion=criterion,
                                 optimizer=optimizer,
                                 lr_scheduler=lr_scheduler,
                                 path=save_model_path,
                                 measure="f1")

    print(f'{visenv_name},  best_metrc : {best_metric} in epoch{epoch}')

    # Added for logging purposes
    with open(trackitems_dir, "a") as f:
        f.write(f'{visenv_name},  best_metrc : {best_metric} in epoch{epoch}')
        f.write("\n\n")
Exemple #13
0
def main(args):
    visenv_name = args.dataset
    exp_dir = os.path.join('exp_result', args.dataset)
    model_dir, log_dir = get_model_log_path(exp_dir, visenv_name)
    stdout_file = os.path.join(log_dir, f'stdout_{time_str()}.txt')
    save_model_path = os.path.join(model_dir, 'ckpt_max.pth')

    if args.redirector:
        print('redirector stdout')
        ReDirectSTD(stdout_file, 'stdout', False)

    pprint.pprint(OrderedDict(args.__dict__))

    print('-' * 60)
    print(f'use GPU{args.device} for training')
    print(
        f'train set: {args.dataset} {args.train_split}, test set: {args.valid_split}'
    )

    train_tsfm, valid_tsfm = get_transform(args)
    print(train_tsfm)

    train_set = AttrDataset(args=args,
                            split=args.train_split,
                            transform=train_tsfm)

    train_loader = DataLoader(
        dataset=train_set,
        batch_size=args.batchsize,
        shuffle=True,
        num_workers=4,
        pin_memory=True,
    )
    valid_set = AttrDataset(args=args,
                            split=args.valid_split,
                            transform=valid_tsfm)

    valid_loader = DataLoader(
        dataset=valid_set,
        batch_size=args.batchsize,
        shuffle=False,
        num_workers=4,
        pin_memory=True,
    )

    print(f'{args.train_split} set: {len(train_loader.dataset)}, '
          f'{args.valid_split} set: {len(valid_loader.dataset)}, '
          f'attr_num : {train_set.attr_num}')

    labels = train_set.label
    sample_weight = labels.mean(0)

    backbone = resnet50()
    classifier = BaseClassifier(nattr=train_set.attr_num)
    model = FeatClassifier(backbone, classifier)

    checkpoint = torch.load(
        '/home/sohaibrabbani/PycharmProjects/Strong_Baseline_of_Pedestrian_Attribute_Recognition/exp_result/custom/custom/img_model/ckpt_max.pth'
    )
    model.load_state_dict({
        k.replace('module.', ''): v
        for k, v in checkpoint['state_dicts'].items()
    })

    for param in model.backbone.parameters():
        param.requires_grad = False

    if torch.cuda.is_available():
        model = torch.nn.DataParallel(model).cuda()

    criterion = CEL_Sigmoid(sample_weight)

    param_groups = [{
        'params':
        filter(lambda p: p.requires_grad, model.module.finetune_params()),
        'lr':
        args.lr_ft
    }, {
        'params':
        filter(lambda p: p.requires_grad, model.module.fresh_params()),
        'lr':
        args.lr_new
    }]

    optimizer = torch.optim.SGD(param_groups,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay,
                                nesterov=False)
    lr_scheduler = ReduceLROnPlateau(optimizer, factor=0.1, patience=4)

    best_metric, epoch = trainer(epoch=args.train_epoch,
                                 model=model,
                                 train_loader=train_loader,
                                 valid_loader=valid_loader,
                                 criterion=criterion,
                                 optimizer=optimizer,
                                 lr_scheduler=lr_scheduler,
                                 path=save_model_path)

    print(f'{visenv_name},  best_metrc : {best_metric} in epoch{epoch}')