Exemple #1
0
                     clip_norm=5.0)
    buffer = ReplayBuffer(buffer_size=replay)

    with tf.Session() as sess:
        sess.run(model.tf_init())
        losses = []
        for epoch in range(1, NUM_EPOCHS + 1):
            batch_losses = 0.0
            for bTrainX, bTrainY in batch_gen.load_train():
                if buffer.size < buffer.max_size:
                    buffer.add(state=bTrainX, action=bTrainY)
                    continue
                else:
                    buffer.add(state=bTrainX, action=bTrainY)
                    state, reward, action = buffer.get_batch(bsz=BSZ)
                    loss = model.optimize(sess, state, action)

                    losses.append(loss)

            print("Epoch {} Average Train Loss: {}, validating...".format(
                epoch, np.mean(losses)))
            losses = []
            allocation_wts = []
            price_change_vec = []
            for bEvalX, bEvalYFat in batch_gen.load_test():
                bEvalY = bEvalYFat[:, -1, :]
                pred_allocations = model.predict_allocation(sess, bEvalX)
                assert bEvalY.shape == pred_allocations.shape
                price_change_vec.append(bEvalY)
                allocation_wts.append(pred_allocations)
Exemple #2
0
                           asset_list=ASSETS,
                           randomize_train=randomize_train,
                           overlapping_train=overlapping_train)

    model = CNNModel(num_hid=NUM_HID,
                     bptt=BPTT,
                     num_assets=len(asset_list),
                     lr=LR,
                     clip_norm=5.0)

    with tf.Session() as sess:
        sess.run(model.tf_init())
        losses = []
        for epoch in range(1, NUM_EPOCHS + 1):
            for bTrainX, bTrainY in batch_gen.load_train():
                loss = model.optimize(sess, bTrainX, bTrainY)
                losses.append(loss)
            print("Epoch {} Average Train Loss: {}, validating...".format(
                epoch,
                sum(losses) / len(losses)))
            losses = []
            allocation_wts = []
            price_change_vec = []
            for bEvalX, bEvalYFat in batch_gen.load_test():
                bEvalY = bEvalYFat[:, -1, :]
                pred_allocations = model.predict_allocation(sess, bEvalX)
                assert bEvalY.shape == pred_allocations.shape
                price_change_vec.append(bEvalY)
                allocation_wts.append(pred_allocations)

            true_change_vec = np.concatenate(price_change_vec)