def __init__(
     self,
     model='net-lin',
     net='alex',
     colorspace='rgb',
     spatial=False,
     use_gpu=True,
     gpu_ids=[
         0
     ]):  # VGG using our perceptually-learned weights (LPIPS metric)
     # def __init__(self, model='net', net='vgg', use_gpu=True): # "default" way of using VGG as a perceptual loss
     super(PerceptualLoss, self).__init__()
     print('Setting up Perceptual loss...')
     self.use_gpu = use_gpu
     self.spatial = spatial
     self.gpu_ids = gpu_ids
     self.model = dist_model.DistModel()
     self.model.initialize(model=model,
                           net=net,
                           use_gpu=use_gpu,
                           colorspace=colorspace,
                           spatial=self.spatial,
                           gpu_ids=gpu_ids)
     print('...[%s] initialized' % self.model.name())
     print('...Done')
Exemple #2
0
def init_lpips_eval():
    LPIPS_dir = "../PerceptualSimilarity"
    LPIPS_net = "squeeze"
    sys.path.append(LPIPS_dir)
    from models import dist_model as dm
    print("Initialize Distance model from %s" % LPIPS_net)
    lpips_model = dm.DistModel()
    lpips_model.initialize(model='net-lin',
                           net='squeeze',
                           use_gpu=True,
                           model_path=os.path.join(
                               LPIPS_dir, 'weights/v0.1/%s.pth' % LPIPS_net))
    return lpips_model
Exemple #3
0
def compute(image_file1, image_file2, gpu_flag):

	## Initializing the model
	model = dm.DistModel()
	model.initialize(model='net-lin', net='squeeze', use_gpu=gpu_flag)

	# Load images
	img0 = util.im2tensor(util.load_image(image_file1)) # RGB image from [-1,1]
	img1 = util.im2tensor(util.load_image(image_file2))

	# Compute distance
	dist01 = model.forward(img0, img1)
	
	return float(dist01[0])
Exemple #4
0
    def __init__(self):
        mode = 'net-lin'  # ['net', 'net-lin'] 'net-lin' for Linearly calibrated models, 'net' for Off-the-shelf uncalibrated networks
        net = 'alex'  # ['squeeze', 'alex', 'vgg']
        use_gpu = True  # if cuda.is_avaliable() else False
        mode_low = 'l2'  # ['l2', 'ssim']
        colorspace = 'RGB'  # ['Lab', 'RGB']

        ## modify configuration
        self.folder_root = '../Results'
        self.dataset = 'Set5'
        self.methods = {'FASRGAN', 'Fs-SRGAN', 'FA+Fs-SRGAN'}

        self.model = dm.DistModel()
        self.model.initialize(model=mode,
                              net=net,
                              use_gpu=use_gpu,
                              colorspace=colorspace)
Exemple #5
0
import argparse
from models import dist_model as dm
from util import util

parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--path0', type=str, default='./imgs/ex_ref.png')
parser.add_argument('--path1', type=str, default='./imgs/ex_p0.png')
parser.add_argument('--use_gpu', action='store_true', help='turn on flag to use GPU')
opt = parser.parse_args()

## Initializing the model
print("Initializing the model")
model = dm.DistModel()
model.initialize(model='net-lin',net='squeeze',use_gpu=opt.use_gpu)

# Load images
print("Load images")
img0 = util.im2tensor(util.load_image(opt.path0)) # RGB image from [-1,1]
img1 = util.im2tensor(util.load_image(opt.path1))

# Compute distance
print("Compute distance")
dist01 = model.forward(img0,img1)
print('Distance: %.3f'%dist01)
Exemple #6
0
    def __init__(self, opt):
        BaseModel.__init__(self, opt)
        # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
        self.loss_names = [
            'D_A', 'G_A', 'cycle_A', 'idt_A', 'D_B', 'G_B', 'cycle_B', 'idt_B'
        ]
        # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
        visual_names_A = ['real_A', 'fake_B', 'rec_A']
        visual_names_B = ['real_B', 'fake_A', 'rec_B']
        if self.isTrain and self.opt.lambda_identity > 0.0:  # if identity loss is used, we also visualize idt_B=G_A(B) ad idt_A=G_A(B)
            visual_names_A.append('idt_B')
            visual_names_B.append('idt_A')
        if self.isTrain:
            visual_names_A.append('real_A_hed')
            visual_names_A.append('rec_A_hed')
        if self.isTrain and self.opt.ntrunc_trunc:
            visual_names_A.append('rec_At')
            visual_names_A.append('rec_At_hed')
            self.loss_names = [
                'D_A', 'G_A', 'cycle_A', 'cycle_A2', 'idt_A', 'D_B', 'G_B',
                'cycle_B', 'idt_B', 'G'
            ]
        if self.isTrain and self.opt.use_mask:
            visual_names_A.append('fake_B_l')
            visual_names_A.append('real_B_l')
            self.loss_names += ['D_A_l', 'G_A_l']
        if self.isTrain and self.opt.use_eye_mask:
            visual_names_A.append('fake_B_le')
            visual_names_A.append('real_B_le')
            self.loss_names += ['D_A_le', 'G_A_le']
        if self.isTrain and self.opt.use_lip_mask:
            visual_names_A.append('fake_B_ll')
            visual_names_A.append('real_B_ll')
            self.loss_names += ['D_A_ll', 'G_A_ll']
        if not self.isTrain and self.opt.use_mask:
            visual_names_A.append('fake_B_l')
            visual_names_A.append('real_B_l')
        if not self.isTrain and self.opt.use_eye_mask:
            visual_names_A.append('fake_B_le')
            visual_names_A.append('real_B_le')
        if not self.isTrain and self.opt.use_lip_mask:
            visual_names_A.append('fake_B_ll')
            visual_names_A.append('real_B_ll')
        self.loss_names += ['D_A_cls', 'G_A_cls']

        self.visual_names = visual_names_A + visual_names_B  # combine visualizations for A and B
        print(self.visual_names)
        # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>.
        if self.isTrain:
            self.model_names = ['G_A', 'G_B', 'D_A', 'D_B']
            if self.opt.use_mask:
                self.model_names += ['D_A_l']
            if self.opt.use_eye_mask:
                self.model_names += ['D_A_le']
            if self.opt.use_lip_mask:
                self.model_names += ['D_A_ll']
        else:  # during test time, only load Gs
            self.model_names = ['G_A', 'G_B']

        # define networks (both Generators and discriminators)
        # The naming is different from those used in the paper.
        # Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
        if not self.opt.style_control:
            self.netG_A = networks.define_G(opt.input_nc, opt.output_nc,
                                            opt.ngf, opt.netG, opt.norm,
                                            not opt.no_dropout, opt.init_type,
                                            opt.init_gain, self.gpu_ids)
        else:
            print(opt.netga)
            print('model0_res', opt.model0_res)
            print('model1_res', opt.model1_res)
            self.netG_A = networks.define_G(opt.input_nc, opt.output_nc,
                                            opt.ngf, opt.netga, opt.norm,
                                            not opt.no_dropout, opt.init_type,
                                            opt.init_gain, self.gpu_ids,
                                            opt.model0_res, opt.model1_res)
        self.netG_B = networks.define_G(opt.output_nc, opt.input_nc, opt.ngf,
                                        opt.netG, opt.norm, not opt.no_dropout,
                                        opt.init_type, opt.init_gain,
                                        self.gpu_ids)

        if self.isTrain:  # define discriminators
            self.netD_A = networks.define_D(opt.output_nc,
                                            opt.ndf,
                                            opt.netda,
                                            opt.n_layers_D,
                                            opt.norm,
                                            opt.init_type,
                                            opt.init_gain,
                                            self.gpu_ids,
                                            n_class=3)
            self.netD_B = networks.define_D(opt.input_nc, opt.ndf, opt.netD,
                                            opt.n_layers_D, opt.norm,
                                            opt.init_type, opt.init_gain,
                                            self.gpu_ids)
            if self.opt.use_mask:
                if self.opt.mask_type in [2, 3]:
                    output_nc = opt.output_nc + 1
                else:
                    output_nc = opt.output_nc
                self.netD_A_l = networks.define_D(output_nc, opt.ndf, opt.netD,
                                                  opt.n_layers_D, opt.norm,
                                                  opt.init_type, opt.init_gain,
                                                  self.gpu_ids)
            if self.opt.use_eye_mask:
                if self.opt.mask_type in [2, 3]:
                    output_nc = opt.output_nc + 1
                else:
                    output_nc = opt.output_nc
                self.netD_A_le = networks.define_D(output_nc, opt.ndf,
                                                   opt.netD, opt.n_layers_D,
                                                   opt.norm, opt.init_type,
                                                   opt.init_gain, self.gpu_ids)
            if self.opt.use_lip_mask:
                if self.opt.mask_type in [2, 3]:
                    output_nc = opt.output_nc + 1
                else:
                    output_nc = opt.output_nc
                self.netD_A_ll = networks.define_D(output_nc, opt.ndf,
                                                   opt.netD, opt.n_layers_D,
                                                   opt.norm, opt.init_type,
                                                   opt.init_gain, self.gpu_ids)

        if not self.isTrain:
            self.criterionGAN = networks.GANLoss('lsgan').to(self.device)

        if self.isTrain:
            if opt.lambda_identity > 0.0:  # only works when input and output images have the same number of channels
                assert (opt.input_nc == opt.output_nc)
            self.fake_A_pool = ImagePool(
                opt.pool_size
            )  # create image buffer to store previously generated images
            self.fake_B_pool = ImagePool(
                opt.pool_size
            )  # create image buffer to store previously generated images
            # define loss functions
            self.criterionGAN = networks.GANLoss(opt.gan_mode).to(
                self.device)  # define GAN loss.
            self.criterionCycle = torch.nn.L1Loss()
            self.criterionIdt = torch.nn.L1Loss()
            self.criterionCls = torch.nn.CrossEntropyLoss()
            self.criterionCls2 = torch.nn.CrossEntropyLoss(reduction='none')
            # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
            self.optimizer_G = torch.optim.Adam(itertools.chain(
                self.netG_A.parameters(), self.netG_B.parameters()),
                                                lr=opt.lr,
                                                betas=(opt.beta1, 0.999))
            if not self.opt.use_mask:
                self.optimizer_D = torch.optim.Adam(itertools.chain(
                    self.netD_A.parameters(), self.netD_B.parameters()),
                                                    lr=opt.lr,
                                                    betas=(opt.beta1, 0.999))
            elif not self.opt.use_eye_mask:
                D_params = list(self.netD_A.parameters()) + list(
                    self.netD_B.parameters()) + list(
                        self.netD_A_l.parameters())
                self.optimizer_D = torch.optim.Adam(D_params,
                                                    lr=opt.lr,
                                                    betas=(opt.beta1, 0.999))
            elif not self.opt.use_lip_mask:
                D_params = list(self.netD_A.parameters()) + list(
                    self.netD_B.parameters()) + list(
                        self.netD_A_l.parameters()) + list(
                            self.netD_A_le.parameters())
                self.optimizer_D = torch.optim.Adam(D_params,
                                                    lr=opt.lr,
                                                    betas=(opt.beta1, 0.999))
            else:
                D_params = list(self.netD_A.parameters()) + list(
                    self.netD_B.parameters()) + list(
                        self.netD_A_l.parameters()) + list(
                            self.netD_A_le.parameters()) + list(
                                self.netD_A_ll.parameters())
                self.optimizer_D = torch.optim.Adam(D_params,
                                                    lr=opt.lr,
                                                    betas=(opt.beta1, 0.999))
            self.optimizers.append(self.optimizer_G)
            self.optimizers.append(self.optimizer_D)

            self.lpips = dm.DistModel(opt,
                                      model='net-lin',
                                      net='alex',
                                      use_gpu=True)
            self.set_requires_grad(self.lpips, False)

            self.hed = networks.define_HED(
                init_weights_=opt.hed_pretrained_mode,
                gpu_ids_=self.opt.gpu_ids_p)
            self.set_requires_grad(self.hed, False)
def compute_metric(dir1, dir2, mode, mask=None, thre=0):

    if mode == 'perceptual':
        from models import dist_model as dm
        import torch
        from util import util
        global model
        if model is None:
            cwd = os.getcwd()
            os.chdir('../../PerceptualSimilarity')
            model = dm.DistModel()
            #model.initialize(model='net-lin',net='alex',use_gpu=True, spatial=True)
            model.initialize(model='net-lin', net='alex', use_gpu=True)
            print('Model [%s] initialized' % model.name())
            os.chdir(cwd)

    if mode.startswith('perceptual_tf'):
        sys.path += ['../../lpips-tensorflow']
        import lpips_tf
        import tensorflow as tf
        image0_ph = tf.placeholder(tf.float32, [1, None, None, 3])
        image1_ph = tf.placeholder(tf.float32, [1, None, None, 3])
        if mode == 'perceptual_tf':
            distance_t = lpips_tf.lpips(image0_ph,
                                        image1_ph,
                                        model='net-lin',
                                        net='alex')
        elif mode == 'perceptual_tf_vgg':
            distance_t = lpips_tf.lpips(image0_ph,
                                        image1_ph,
                                        model='net-lin',
                                        net='vgg')
        else:
            raise
        sess = tf.Session()

    if mode == 'l2_with_gradient':
        import demo
        import tensorflow as tf
        output = tf.placeholder(tf.float32, shape=[1, None, None, None])
        gradient = demo.image_gradients(output)
        sess = tf.Session()

    files1 = os.listdir(dir1)
    files2 = os.listdir(dir2)
    img_files1 = sorted([
        file for file in files1
        if file.endswith('.png') or file.endswith('.jpg')
    ])
    img_files2 = sorted([
        file for file in files2
        if file.endswith('.png') or file.endswith('.jpg')
    ])

    if '--prefix' in sys.argv:
        prefix_idx = sys.argv.index('--prefix')
        prefix = sys.argv[prefix_idx + 1]
        img_files2 = [file for file in img_files2 if file.startswith(prefix)]

    if mask is not None:
        mask_files = []
        for dir in sorted(mask):
            files3 = os.listdir(dir)
            add_mask_files = sorted([
                os.path.join(dir, file) for file in files3
                if file.startswith('mask')
            ])
            if len(add_mask_files) == 0:
                files_to_dilate = sorted([
                    file for file in files3
                    if file.startswith('g_intermediates')
                ])
                for file in files_to_dilate:
                    mask_arr = numpy.load(os.path.join(dir, file))
                    mask_arr = numpy.squeeze(mask_arr)
                    mask_arr = mask_arr >= thre
                    dilated_mask = dilation(mask_arr, disk(10))
                    dilated_filename = 'mask_' + file
                    numpy.save(os.path.join(dir, dilated_filename),
                               dilated_mask.astype('f'))
                    add_mask_files.append(os.path.join(dir, dilated_filename))
            mask_files += add_mask_files
        print(mask_files)
        assert len(mask_files) == len(img_files1)

    skip_first_n = 0
    if '--skip_first_n' in sys.argv:
        try:
            skip_first_n = int(sys.argv[sys.argv.index('--skip_first_n') + 1])
        except:
            skip_first_n = 0

    skip_last_n = 0
    if '--skip_last_n' in sys.argv:
        try:
            skip_last_n = int(sys.argv[sys.argv.index('--skip_last_n') + 1])
        except:
            skip_last_n = 0

    img_files2 = img_files2[skip_first_n:]
    if skip_last_n > 0:
        img_files2 = img_files2[:-skip_last_n]
    assert len(img_files1) == len(img_files2)

    # locate GT gradient directory
    if mode == 'l2_with_gradient':
        head, tail = os.path.split(dir2)
        gradient_gt_dir = os.path.join(head, tail[:-3] + 'grad')
        if not os.path.exists(gradient_gt_dir):
            printf("dir not found,", gradient_gt_dir)
            raise
        gradient_gt_files = os.listdir(gradient_gt_dir)
        gradient_gt_files = sorted(
            [file for file in gradient_gt_files if file.endswith('.npy')])
        assert len(img_files1) == len(gradient_gt_files)

    vals = numpy.empty(len(img_files1))
    #if mode == 'perceptual':
    #    global model

    for ind in range(len(img_files1)):
        if mode == 'ssim' or mode == 'l2' or mode == 'l2_with_gradient':
            img1 = skimage.img_as_float(
                skimage.io.imread(os.path.join(dir1, img_files1[ind])))
            img2 = skimage.img_as_float(
                skimage.io.imread(os.path.join(dir2, img_files2[ind])))
            if mode == 'ssim':
                #vals[ind] = skimage.measure.compare_ssim(img1, img2, datarange=img2.max()-img2.min(), multichannel=True)
                metric_val = skimage.measure.compare_ssim(
                    img1,
                    img2,
                    datarange=img2.max() - img2.min(),
                    multichannel=True)
            else:
                #vals[ind] = numpy.mean((img1 - img2) ** 2) * 255.0 * 255.0
                metric_val = ((img1 - img2)**2) * 255.0 * 255.0
            if mode == 'l2_with_gradient':
                metric_val = numpy.mean(metric_val, axis=2)
                gradient_gt = numpy.load(
                    os.path.join(gradient_gt_dir, gradient_gt_files[ind]))
                dx, dy = sess.run(gradient,
                                  feed_dict={
                                      output:
                                      numpy.expand_dims(img1[..., ::-1],
                                                        axis=0)
                                  })
                #is_edge = skimage.feature.canny(skimage.color.rgb2gray(img1))
                dx_ground = gradient_gt[:, :, :, 1:4]
                dy_ground = gradient_gt[:, :, :, 4:]
                edge_ground = gradient_gt[:, :, :, 0]
                gradient_loss_term = numpy.mean(
                    (dx - dx_ground)**2.0 + (dy - dy_ground)**2.0, axis=3)
                metric_val += numpy.squeeze(
                    0.2 * 255.0 * 255.0 * gradient_loss_term * edge_ground *
                    edge_ground.size / numpy.sum(edge_ground))

            #if mode == 'l2' and mask is not None:
            #    img_diff = (img1 - img2) ** 2.0
            #    mask_img = numpy.load(mask_files[ind])
            #    img_diff *= numpy.expand_dims(mask_img, axis=2)
            #    vals[ind] = (numpy.sum(img_diff) / numpy.sum(mask_img * 3)) * 255.0 * 255.0
        elif mode == 'perceptual':
            img1 = util.im2tensor(
                util.load_image(os.path.join(dir1, img_files1[ind])))
            img2 = util.im2tensor(
                util.load_image(os.path.join(dir2, img_files2[ind])))
            #vals[ind] = numpy.mean(model.forward(img1, img2)[0])
            metric_val = numpy.expand_dims(model.forward(img1, img2), axis=2)
        elif mode.startswith('perceptual_tf'):
            img1 = np.expand_dims(skimage.img_as_float(
                skimage.io.imread(os.path.join(dir1, img_files1[ind]))),
                                  axis=0)
            img2 = np.expand_dims(skimage.img_as_float(
                skimage.io.imread(os.path.join(dir2, img_files2[ind]))),
                                  axis=0)
            metric_val = sess.run(distance_t,
                                  feed_dict={
                                      image0_ph: img1,
                                      image1_ph: img2
                                  })
        else:
            raise

        if mask is not None:
            assert mode in ['l2', 'perceptual']
            mask_img = numpy.load(mask_files[ind])
            metric_val *= numpy.expand_dims(mask_img, axis=2)
            vals[ind] = numpy.sum(metric_val) / (numpy.sum(mask_img) *
                                                 metric_val.shape[2])
        else:
            vals[ind] = numpy.mean(metric_val)

    mode = mode + ('_mask' if mask is not None else '')
    filename_all = mode + '_all.txt'
    filename_breakdown = mode + '_breakdown.txt'
    filename_single = mode + '.txt'
    numpy.savetxt(os.path.join(dir1, filename_all), vals, fmt="%f, ")
    target = open(os.path.join(dir1, filename_single), 'w')
    target.write("%f" % numpy.mean(vals))
    target.close()
    if len(img_files1) == 30:
        target = open(os.path.join(dir1, filename_breakdown), 'w')
        target.write("%f, %f, %f" % (numpy.mean(
            vals[:5]), numpy.mean(vals[5:10]), numpy.mean(vals[10:])))
        target.close()
    if mode in ['l2_with_gradient', 'perceptual_tf']:
        sess.close()
    return vals
Exemple #8
0
 def __init__(self, model='net-lin', net='vgg', use_gpu=True): # VGG using our perceptually-learned weights (LPIPS metric)
 # def __init__(self, model='net', net='vgg', use_gpu=True): # "default" way of using VGG
     print('Setting up Perceptual loss..')
     self.model = dist_model.DistModel()
     self.model.initialize(model=model, net=net, use_gpu=True)
     print('Done')
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model',
                        choices=['net-lin', 'net'],
                        default='net-lin',
                        help='net-lin or net')
    parser.add_argument('--net',
                        choices=['squeeze', 'alex', 'vgg'],
                        default='alex',
                        help='squeeze, alex, or vgg')
    parser.add_argument('--version', type=str, default='0.1')
    parser.add_argument('--image_height', type=int, default=64)
    parser.add_argument('--image_width', type=int, default=64)
    args = parser.parse_args()

    model = dm.DistModel()
    model.initialize(model=args.model,
                     net=args.net,
                     use_gpu=False,
                     version=args.version)
    print('Model [%s] initialized' % model.name())

    dummy_im0 = torch.Tensor(
        1, 3, args.image_height,
        args.image_width)  # image should be RGB, normalized to [-1, 1]
    dummy_im1 = torch.Tensor(1, 3, args.image_height, args.image_width)

    cache_dir = os.path.expanduser('~/.lpips')
    os.makedirs(cache_dir, exist_ok=True)
    onnx_fname = os.path.join(
        cache_dir, '%s_%s_v%s.onnx' % (args.model, args.net, args.version))

    # export model to onnx format
    torch.onnx.export(model.net, (dummy_im0, dummy_im1),
                      onnx_fname,
                      verbose=True)

    # load and change dimensions to be dynamic
    model = onnx.load(onnx_fname)
    for dim in (0, 2, 3):
        model.graph.input[0].type.tensor_type.shape.dim[dim].dim_param = '?'
        model.graph.input[1].type.tensor_type.shape.dim[dim].dim_param = '?'

    # needs to be imported after all the pytorch stuff, otherwise this causes a segfault
    from onnx_tf.backend import prepare
    tf_rep = prepare(model, device='CPU')
    producer_version = tf_rep.graph.graph_def_versions.producer
    pb_fname = os.path.join(
        cache_dir, '%s_%s_v%s_%d.pb' %
        (args.model, args.net, args.version, producer_version))
    tf_rep.export_graph(pb_fname)
    input0_name, input1_name = [
        tf_rep.tensor_dict[input_name].name for input_name in tf_rep.inputs
    ]
    (output_name, ) = [
        tf_rep.tensor_dict[output_name].name for output_name in tf_rep.outputs
    ]

    # ensure these are the names of the 2 inputs, since that will be assumed when loading the pb file
    assert input0_name == '0:0'
    assert input1_name == '1:0'
    # ensure that the only output is the output of the last op in the graph, since that will be assumed later
    (last_output_name, ) = [
        output.name for output in tf_rep.graph.get_operations()[-1].outputs
    ]
    assert output_name == last_output_name
 def __init__(self, model='net-lin', net='alex', use_cuda=True):
     super(PerceptualSimilarityLoss, self).__init__()
     self.model = dm.DistModel()
     self.model.initialize(model=model, net=net, use_gpu=use_cuda)
Exemple #11
0

# Deeploss competitor 2: lin tuned squeeze
m = dm.DistModel()
path=os.path.join('./checkpoints/', 'rgb_pnet_lin_squeeze_trial0', 'latest_net_.pth')
m.initialize(model='net-lin', net='squeeze', model_path=path, colorspace='RGB',use_gpu=is_cuda, batch_size=64)
m.model_name = 'Deeploss-squeeze'
m.batch_size = m.batch_size // 4
models.append(m)
"""

# # Adaptive loss, as per reviewer request

# In[13]:

m = dm.DistModel()
path = os.path.join('./checkpoints/', 'gray_adaptive_trial0',
                    'latest_net_.pth')
m.initialize(model='adaptive', colorspace='Gray', use_gpu=is_cuda)
m.net.load_state_dict(torch.load(path, map_location=device))
m.model_name = 'Adaptive [LA]'
models.append(m)

m = dm.DistModel()
path = os.path.join('./checkpoints/', 'rgb_adaptive_trial0', 'latest_net_.pth')
m.initialize(model='adaptive', colorspace='RGB', use_gpu=is_cuda)
m.net.load_state_dict(torch.load(path, map_location=device))
m.model_name = 'Adaptive'
models.append(m)

# # Evaluate
Exemple #12
0
def test_training_images2(model, test_loader, device):

    #model = model.eval()

    lpipsloss = dm.DistModel()
    lpipsloss.initialize(model='net-lin',
                         net='alex',
                         use_gpu=True,
                         version='0.1')

    mse_loss = torch.nn.MSELoss(size_average=None)

    loss_dict = {
        'mse': [],
        'mse_avg': 0,
        'psnr': [],
        'psnr_avg': 0,
        'lpips': [],
        'lpips_avg': 0,
        'lpips_center': [],
        'lpips_center_avg': 0
    }

    with torch.no_grad():
        for i_batch, sample_batched in enumerate(test_loader):
            print('\r', 'running test images, image:', i_batch, end='')
            inputs = sample_batched['image'].to(device)
            labels = sample_batched['label'].to(device)

            output, _ = model(inputs)

            if not (np.any(output.cpu().detach().numpy() == -np.inf)):

                mse_batch = mse_loss(output, labels)
                lpips_batch = lpipsloss.forward_pair(output, labels)

                c1 = 270 // 2
                c2 = 480 // 2
                sz = 75

                lpips_center = lpipsloss.forward_pair(
                    output[:, c1 - sz:c1 + sz, c2 - sz:c2 + sz],
                    inputs[:, c1 - sz:c1 + sz, c2 - sz:c2 + sz])
                psnr_batch = 20 * torch.log10(1 / torch.sqrt(mse_batch))

                loss_dict['mse'].append(
                    mse_batch.cpu().detach().numpy().squeeze())
                loss_dict['lpips'].append(
                    lpips_batch.cpu().detach().numpy().squeeze())

                loss_dict['lpips_center'].append(
                    lpips_center.cpu().detach().numpy().squeeze())
                #loss_dict['lpips'].append(lpips_batch)
                loss_dict['psnr'].append(
                    psnr_batch.cpu().detach().numpy().squeeze())

                if i_batch == 63:
                    loss_dict['sample_image'] = preplot(
                        output.detach().cpu().numpy()[0])

        loss_dict['mse_avg'] = np.average(loss_dict['mse']).squeeze()
        loss_dict['psnr_avg'] = np.average(loss_dict['psnr']).squeeze()
        loss_dict['lpips_avg'] = np.average(loss_dict['lpips']).squeeze()
        loss_dict['lpips_center_avg'] = np.average(
            loss_dict['lpips_center']).squeeze()
        print('\r', 'avg mse:', loss_dict['mse_avg'], 'avg psnr:',
              loss_dict['psnr_avg'], 'avg lpips:', loss_dict['lpips_avg'],
              'avg lpips center:', loss_dict['lpips_center_avg'])

        return loss_dict
Exemple #13
0
def test_training_images(model, model_admm, test_loader, device):

    lpipsloss = dm.DistModel()
    lpipsloss.initialize(model='net-lin',
                         net='alex',
                         use_gpu=True,
                         version='0.1')

    mse_loss = torch.nn.MSELoss(size_average=None)

    loss_dict = {
        'mse': [],
        'mse_avg': 0,
        'psnr': [],
        'psnr_avg': 0,
        'lpips': [],
        'lpips_avg': 0,
        'data_loss': [],
        'data_loss_avg': 0,
        'lpips_center': [],
        'lpips_center_avg': 0,
        'mse_center': [],
        'mse_center_avg': 0,
        'sample_images': []
    }

    with torch.no_grad():
        for i_batch, sample_batched in enumerate(test_loader):
            print('\r', 'running test images, image:', i_batch, end='')
            # Get input and label batch
            inputs = sample_batched['image'].to(device)
            labels = sample_batched['label'].to(device)
            output = model(inputs)

            if isinstance(output, tuple):
                output = output[0]

            # Check if image is bad
            if not (np.any(output.cpu().detach().numpy() == -np.inf)):

                mse_batch = mse_loss(output, labels)  # MSE loss
                lpips_batch = lpipsloss.forward_pair(output,
                                                     labels)  # lpips loss
                psnr_batch = 20 * torch.log10(
                    1 / torch.sqrt(mse_batch))  # PSNR

                # Center region
                c1 = 270 // 2
                c2 = 480 // 2
                sz = 75
                lpips_center = lpipsloss.forward_pair(
                    output[:, :, c1 - sz:c1 + sz, c2 - sz:c2 + sz],
                    labels[:, :, c1 - sz:c1 + sz, c2 - sz:c2 + sz])

                mse_center = mse_loss(
                    output[:, :, c1 - sz:c1 + sz, c2 - sz:c2 + sz],
                    labels[:, :, c1 - sz:c1 + sz, c2 - sz:c2 + sz])

                # Data fidelity loss
                input_image = normalize_image(inputs)
                hfor = normalize_image(
                    Hfor(model_admm, pad_zeros_torch(model_admm, output)))
                data_loss = torch.sum(
                    torch.norm(crop(model_admm, hfor) - input_image)**2)

                loss_dict['mse'].append(
                    mse_batch.cpu().detach().numpy().squeeze())
                loss_dict['lpips'].append(
                    lpips_batch.cpu().detach().numpy().squeeze())
                loss_dict['psnr'].append(
                    psnr_batch.cpu().detach().numpy().squeeze())
                loss_dict['data_loss'].append(
                    psnr_batch.cpu().detach().numpy().squeeze())

                loss_dict['lpips_center'].append(
                    lpips_center.cpu().detach().numpy().squeeze())
                loss_dict['mse_center'].append(
                    data_loss.cpu().detach().numpy().squeeze())

                inds = [
                    63, 41, 88, 123, 134, 135, 151, 155, 160, 163, 178, 180,
                    187, 198, 202, 212, 224, 227, 239, 250, 253, 261, 271, 274,
                    281, 283, 396, 394, 392, 385, 376, 372, 366, 340, 336, 325,
                    324, 323, 400, 406, 419, 461, 502, 546, 549, 595, 641, 653,
                    693, 695, 712, 732, 738, 741, 757, 809, 984
                ]

                if i_batch in inds:
                    loss_dict['sample_images'].append(
                        preplot(output.detach().cpu().numpy()[0]))

        loss_dict['mse_avg'] = np.average(loss_dict['mse']).squeeze()
        loss_dict['psnr_avg'] = np.average(loss_dict['psnr']).squeeze()
        loss_dict['lpips_avg'] = np.average(loss_dict['lpips']).squeeze()
        loss_dict['data_loss_avg'] = np.average(
            loss_dict['data_loss']).squeeze()

        loss_dict['lpips_center_avg'] = np.average(
            loss_dict['lpips_center']).squeeze()
        loss_dict['mse_center_avg'] = np.average(
            loss_dict['mse_center']).squeeze()

        print('\r', 'avg mse:', loss_dict['mse_avg'], 'avg psnr:',
              loss_dict['psnr_avg'], 'avg lpips:', loss_dict['lpips_avg'],
              'avg lpips center:', loss_dict['lpips_center_avg'])

        return loss_dict