Exemple #1
0
    def __init__(self, num_layers, mode='ir', opts=None):
        super(GradualStyleEncoder, self).__init__()
        assert num_layers in [50, 100,
                              152], 'num_layers should be 50,100, or 152'
        assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
        blocks = get_blocks(num_layers)
        if mode == 'ir':
            unit_module = bottleneck_IR
        elif mode == 'ir_se':
            unit_module = bottleneck_IR_SE
        self.input_layer = Sequential(
            Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
            BatchNorm2d(64), PReLU(64))
        modules = []
        for block in blocks:
            for bottleneck in block:
                modules.append(
                    unit_module(bottleneck.in_channel, bottleneck.depth,
                                bottleneck.stride))
        self.body = Sequential(*modules)

        self.styles = nn.ModuleList()
        self.style_count = 16
        self.coarse_ind = 3
        self.middle_ind = 7
        for i in range(self.style_count):
            if i < self.coarse_ind:
                style = GradualStyleBlock(512, 512, 16)
            elif i < self.middle_ind:
                style = GradualStyleBlock(512, 512, 32)
            else:
                style = GradualStyleBlock(512, 512, 64)
            self.styles.append(style)
        self.latlayer1 = nn.Conv2d(256,
                                   512,
                                   kernel_size=1,
                                   stride=1,
                                   padding=0)
        self.latlayer2 = nn.Conv2d(128,
                                   512,
                                   kernel_size=1,
                                   stride=1,
                                   padding=0)
Exemple #2
0
 def __init__(self, num_layers, mode='ir', opts=None):
     super(BackboneEncoderUsingLastLayerIntoW, self).__init__()
     print('Using BackboneEncoderUsingLastLayerIntoW')
     assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
     assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
     blocks = get_blocks(num_layers)
     if mode == 'ir':
         unit_module = bottleneck_IR
     elif mode == 'ir_se':
         unit_module = bottleneck_IR_SE
     self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
                                   BatchNorm2d(64),
                                   PReLU(64))
     self.output_pool = torch.nn.AdaptiveAvgPool2d((1, 1))
     self.linear = EqualLinear(512, 512, lr_mul=1)
     modules = []
     for block in blocks:
         for bottleneck in block:
             modules.append(unit_module(bottleneck.in_channel,
                                        bottleneck.depth,
                                        bottleneck.stride))
     self.body = Sequential(*modules)
Exemple #3
0
    def __init__(self, opts=None):
        super(GradualMntToVecEncoder, self).__init__()
        print('Using GradualMntToVecEncoder')
        blocks = get_blocks(num_layers=50)
        unit_module = bottleneck_SE
        self.input_layer = Sequential(
            Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
            BatchNorm2d(64), PReLU(64))
        modules = []
        for block in blocks:
            for bottleneck in block:
                modules.append(
                    unit_module(bottleneck.in_channel, bottleneck.depth,
                                bottleneck.stride))
        self.body = Sequential(*modules)

        self.styles = nn.ModuleList()
        self.style_count = opts.style_count
        self.coarse_ind = 3
        self.middle_ind = 7
        for i in range(self.style_count):
            if i < self.coarse_ind:
                style = GradualStyleBlock(512, 512, 16)
            elif i < self.middle_ind:
                style = GradualStyleBlock(512, 512, 32)
            else:
                style = GradualStyleBlock(512, 512, 64)
            self.styles.append(style)
        self.latlayer1 = nn.Conv2d(256,
                                   512,
                                   kernel_size=1,
                                   stride=1,
                                   padding=0)
        self.latlayer2 = nn.Conv2d(128,
                                   512,
                                   kernel_size=1,
                                   stride=1,
                                   padding=0)
Exemple #4
0
    def __init__(self,
                 input_size,
                 num_layers,
                 mode='ir',
                 drop_ratio=0.4,
                 affine=True):
        super(Backbone, self).__init__()
        assert input_size in [112, 224], "input_size should be 112 or 224"
        assert num_layers in [50, 100,
                              152], "num_layers should be 50, 100 or 152"
        assert mode in ['ir', 'ir_se'], "mode should be ir or ir_se"
        blocks = get_blocks(num_layers)
        if mode == 'ir':
            unit_module = bottleneck_IR
        elif mode == 'ir_se':
            unit_module = bottleneck_IR_SE
        self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
                                      BatchNorm2d(64), PReLU(64))
        if input_size == 112:
            self.output_layer = Sequential(BatchNorm2d(512),
                                           Dropout(drop_ratio), Flatten(),
                                           Linear(512 * 7 * 7, 512),
                                           BatchNorm1d(512, affine=affine))
        else:
            self.output_layer = Sequential(BatchNorm2d(512),
                                           Dropout(drop_ratio), Flatten(),
                                           Linear(512 * 14 * 14, 512),
                                           BatchNorm1d(512, affine=affine))

        modules = []
        for block in blocks:
            for bottleneck in block:
                modules.append(
                    unit_module(bottleneck.in_channel, bottleneck.depth,
                                bottleneck.stride))
        self.body = Sequential(*modules)