def model_fn(features, labels, mode, params): # Get global step global_step = tf.train.get_global_step() # Construct mtf graph + mesh from params graph = mtf.Graph() mesh_shape = mtf.convert_to_shape(params["mesh_shape"]) layout_rules = mtf.convert_to_layout_rules(params["layout"]) # Mesh setup if params["use_tpu"]: var_placer, mesh_impl = simd_mesh_setup(params, mesh_shape, layout_rules) else: var_placer = None gpu_ids = params["gpu_ids"] mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( mesh_shape, layout_rules, gpu_ids) # Trainable variable precision # Store to checkpoints in master type, train in slice type, compute in activation type if params["precision"] == "bfloat16": variable_dtype = mtf.VariableDType(master_dtype=tf.bfloat16, slice_dtype=tf.float32, activation_dtype=tf.bfloat16) else: variable_dtype = mtf.VariableDType(master_dtype=tf.float32, slice_dtype=tf.float32, activation_dtype=tf.float32) # Build mtf mesh object mesh = mtf.Mesh(graph, "my_mesh", var_placer) # Build mtf_features & seq length dict for getting number of microbatches # We need to pack inputs into a dict to pass into serialize_training_step features_dict = {"inputs": features, "labels": labels} sequence_length_dict = { "inputs": params["n_ctx"], "labels": params["n_ctx"] } params = add_mode_to_params(params, mode) batch_size = get_batch_size(params) batch_dim = mtf.Dimension("batch", batch_size) batch_dims = [batch_dim] feature_length = sequence_length_dict["inputs"] length_dim = mtf.Dimension("sequence", feature_length) mtf_features = {} for key, x in features_dict.items(): if x is not None: feature_shape = mtf.Shape(batch_dims + [length_dim]) if type(features_dict[key]) == dict: features_dict[key] = features_dict[key]["feature"] x = tf.cast(features_dict[key], tf.int32) x = tf.reshape(x, feature_shape.to_integer_list) mtf_features[key] = mtf.import_fully_replicated(mesh, x, feature_shape, name=key) # Instantiate dict for dimensions, bias, etc that can be calculated here once then passed into model other_features = {} memory_length_dim = mtf.Dimension("memory_length", length_dim.size) attn_bias = biasmask_attn_weights( mesh, length_dim, memory_length_dim, variable_dtype) if params["causal"] else None # Add attn_bias into mtf_features other_features["attn_bias"] = attn_bias # Define other Dimensions that we'll need inside the model embd_dim = mtf.Dimension("embd", params["n_embd"]) vocab_dim = mtf.Dimension("vocab", params["n_vocab"]) # We need this because gathering when both the args have the same dimension in them breaks things # This dim is specifically for the weights # This prevents the "Einsum has lhs dimension without corresponding rhs or output dimension." error embed_sequence_dim = mtf.Dimension("embed_sequence", params["n_ctx"]) other_features["embd_dim"] = embd_dim other_features["vocab_dim"] = vocab_dim other_features["embed_sequence_dim"] = embed_sequence_dim other_features["memory_length_dim"] = memory_length_dim if mode == tf.estimator.ModeKeys.PREDICT: # Set up the model for prediction inputs = mtf_features["inputs"] if params["remove_partial_sequences"] is None: params["remove_partial_sequences"] = False export = params.get("export", False) if not export: mtf_samples = sample_autoregressive( inputs, other_features=other_features, params=params, variable_dtype=variable_dtype, remove_partial_sequences=params["remove_partial_sequences"], stop_at_token=params["eos_id"], sampling_use_entmax=params['sampling_use_entmax'], max_steps=params["predict_max_steps"]) else: with mtf.utils.outside_all_rewrites(): with tf.variable_scope('gpt2'): mtf_samples, loss, loss_batch = gpt2.model( mtf_features, other_features, params, mesh, variable_dtype=variable_dtype, context=None) mtf_samples = mtf.anonymize(mtf_samples) inputs = mtf.anonymize(inputs) lowering = mtf.Lowering(graph, {mesh: mesh_impl}, autostack=True) inputs = lowering.export_to_tf_tensor(inputs) outputs = lowering.export_to_tf_tensor(mtf_samples) predictions = {"inputs": inputs, "outputs": outputs} def scaffold_fn(): return tf.train.Scaffold( local_init_op=tf.group( tf.train.Scaffold.default_local_init_op(), lowering.copy_masters_to_slices(), name="mtf_local_init_op"), ready_op=tf.concat([ tf.report_uninitialized_variables(), resources.report_uninitialized_resources() ], axis=0, name="mtf_ready_op")) return tpu_estimator.TPUEstimatorSpec( mode=tf.estimator.ModeKeys.PREDICT, predictions=predictions, scaffold_fn=scaffold_fn, prediction_hooks=[mtf.MtfRestoreHook(lowering)]) # We're not predicting, so we better be training or evaluating assert mode in [tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL] if mode == tf.estimator.ModeKeys.TRAIN: # Gets number of microbatches per batch for serialized training # if param tokens_per_mb_per_replica = None, this defaults to 1 and no microbatching is performed num_microbatches = int( mtf_transformer.utils.serialize_num_microbatches( batch_dim=batch_dim, sequence_length=sequence_length_dict, mesh_shape=mesh_shape, layout_rules=layout_rules, tokens_per_microbatch_per_replica=params[ "tokens_per_mb_per_replica"])) else: num_microbatches = 1 params[ "num_microbatches"] = num_microbatches # Add num microbatches to params if num_microbatches > 1: # For serialize_training_step we need to modify the model to output results in a dict def serialized_fn(mtf_features): if params["model"] == "GPT": with tf.variable_scope('gpt2'): logits, loss, loss_batch = gpt2.model( mtf_features, other_features, params, mesh, variable_dtype=variable_dtype) return { "logits": logits, "loss": loss, "loss_batch": loss_batch } else: raise Exception( f"'{params['model']}' is not a valid model - please select from [GPT]" ) # Serialize the training step - Gradients are accumulated locally and reduced once. var_grads, output_dict = mtf.serialize_training_step( mtf_features, serialized_fn, batch_dim, num_microbatches) loss = output_dict["loss"] loss_batch = output_dict["loss_batch"] logits = output_dict["logits"] else: # If we're not splitting into microbatches, return logits & loss as is if params["model"] == "GPT": with mtf.utils.outside_all_rewrites(): with tf.variable_scope('gpt2'): logits, loss, loss_batch = gpt2.model( mtf_features, other_features, params, mesh, variable_dtype=variable_dtype, context=None) else: raise Exception( f"'{params['model']}' is not a valid model - please select from [GPT]" ) # Auto layout generation if params["auto_layout"]: auto_layout(graph, mesh_shape, logits, loss) if params["auto_layout_and_mesh_shape"]: auto_layout_and_mesh_shape(graph, params["num_cores"], logits, loss) if mode == tf.estimator.ModeKeys.TRAIN: # In TRAIN mode, get optimizer if params["num_microbatches"] > 1: # If we are splitting the batch into microbatches, var grads are created in the serialize_training_step fn # So we pass them in here _, update_ops, var_grads = get_optimizer( mesh, loss, params, variable_dtype=variable_dtype, inp_var_grads=var_grads) else: # Otherwise, they are created in the get_optimizer fn, so we leave inp_var_grads blank _, update_ops, var_grads = get_optimizer( mesh, loss, params, variable_dtype=variable_dtype) # Log summaries to tensorboard mtf.scalar_summary("loss", loss) # Log gradients if in params if params["log_grads"] not in [None, False]: for g in var_grads: grad_norm = mtf.sqrt(mtf.reduce_sum(mtf.square(g))) mtf.scalar_summary("grads/norm" + g.name[:-2], grad_norm) else: # For now, we can only export fully-replicated tensors. # This has to be done before lowering or they will not be included in the graph mean_logits = mtf.reduce_mean(logits, reduced_dim=vocab_dim) max_logits = mtf.argmax(logits, vocab_dim) del logits fully_replicated_mean_logits = mtf.anonymize(mean_logits) fully_replicated_max_logits = mtf.anonymize(max_logits) fully_replicated_loss_batch = mtf.anonymize(loss_batch) # Gets & prints info about no. trainable vars in the model & dimension names get_graph_info(graph) # 'lowers' mtf tensors into a tf graph - this enables us to export results as tf tensors lowering = mtf.Lowering(graph, {mesh: mesh_impl}, autostack=True) tf_loss = lowering.export_to_tf_tensor(loss) tf_loss = tf.cast(tf_loss, tf.float32) if mode == tf.estimator.ModeKeys.TRAIN: # Use our patched version until mtf updates theirs host_call = create_host_call(params['model_path']) mtf.utils.remove_summaries() # Creates train_op tf_update_ops = [lowering.lowered_operation(op) for op in update_ops] tf_update_ops.append(tf.assign_add( global_step, 1)) # Need to manually increment global_step tf.logging.info(f"tf_update_ops: {tf_update_ops}") train_op = tf.group(tf_update_ops) else: tf_mean_logits = lowering.export_to_tf_tensor( fully_replicated_mean_logits) tf_max_logits = lowering.export_to_tf_tensor( fully_replicated_max_logits) tf_loss_batch = tf.to_float( lowering.export_to_tf_tensor(fully_replicated_loss_batch)) with mtf.utils.outside_all_rewrites(): # Copy master variables to slices. Must be called first. restore_hook = mtf.MtfRestoreHook(lowering) if mode == tf.estimator.ModeKeys.TRAIN: # Set up the checkpoint server and return the TPUEstimatorSpec saver = tf.train.Saver(tf.global_variables(), sharded=True, max_to_keep=10, keep_checkpoint_every_n_hours=2, defer_build=False, save_relative_paths=True) tf.add_to_collection(tf.GraphKeys.SAVERS, saver) saver_listener = mtf.MtfCheckpointSaverListener(lowering) saver_hook = tf.train.CheckpointSaverHook( params["model_path"], save_steps=params["steps_per_checkpoint"], saver=saver, listeners=[saver_listener]) return tpu_estimator.TPUEstimatorSpec( tf.estimator.ModeKeys.TRAIN, loss=tf_loss, host_call=host_call, train_op=train_op, training_hooks=[restore_hook, saver_hook]) elif mode == tf.estimator.ModeKeys.EVAL: # Evaluation metrics def _perplexity(loss): perplexity = tf.exp(loss) return tf.metrics.mean(perplexity) def _bits_per_byte(loss): bpb = loss * (0.29335 / math.log(2)) return tf.metrics.mean(bpb) def _metric_fn(tf_mean_logits, tf_loss_batch): mean_logits = tf.metrics.mean(tf_mean_logits) loss = tf.reduce_mean(tf_loss_batch) perp = _perplexity(loss) bpb = _bits_per_byte(loss) return { "mean_logits": mean_logits, "perplexity": perp, "bits per byte": bpb } def _lambada_metric_fn(labels, tf_max_logits, tf_loss_batch): eos_token = params["eos_id"] answer_positions = tf.where( tf.math.not_equal(labels, eos_token)) correct_answers = tf.gather_nd( tf.math.equal(tf_max_logits, labels), answer_positions) accuracy = tf.metrics.mean(tf.cast(correct_answers, tf.float32)) # I guess tf_loss_batch has z_loss and maybe other stuff added to it # so maybe this should be calculated separately in the future answer_loss = tf.gather_nd(tf_loss_batch, answer_positions) log_perplexity = tf.metrics.mean(answer_loss) return { "lambada_acc": accuracy, "lambada_log_ppl": log_perplexity } eval_task = params["eval_task"] if eval_task == "lambada": eval_metrics = (_lambada_metric_fn, [labels, tf_max_logits, tf_loss_batch]) else: eval_metrics = (_metric_fn, [tf_mean_logits, tf_loss_batch]) return tpu_estimator.TPUEstimatorSpec( tf.estimator.ModeKeys.EVAL, evaluation_hooks=[restore_hook], loss=tf_loss, eval_metrics=eval_metrics)
#from models.gpt2 import gpt2, gpt2_rev, sample, encoder from models.gpt2 import gpt2, sample, encoder from importlib import reload tf1 = tf.compat.v1 reload(gpt2) reload(gpt2_rev) reload(sample) reload(encoder) params = gpt2.default_hparams() context_fixed = tf1.placeholder(tf.int32, shape=[1, params['n_ctx']+1], name="tokens") reload(gpt2); output_fixed = gpt2.model(params=params, X=context_fixed[:, :-1], labels=context_fixed[:, 1:], reuse=tf1.AUTO_REUSE) def top_k_logits(logits, k): if k == 0: # no truncation return logits def _top_k(): values, _ = tf.nn.top_k(logits, k=k) min_values = values[:, -1, tf.newaxis] return tf.where( logits < min_values, tf.ones_like(logits, dtype=logits.dtype) * -1e10, logits, )
def sample_autoregressive(partial_sequences, other_features, params, stop_at_token=50256, max_steps=None, temperature=0.1, variable_dtype=mtf.VariableDType(tf.float32), encoder_output=None, encoder_sequence_id=None, encoder_inputs=None, shared_params=None, has_partial_sequences=True, encoder_layer_outputs=None, never_end=False, remove_partial_sequences=False, sampling_keep_top_k=-1, sampling_use_entmax = False, bos_id=50256, ): """Sample randomly one token at a time. The partial_sequences represent partial sequences to be continued. The first tokens of each sequence are nonzero representing the given partial sequences and the last tokens of each sequence are zeros, representing what needs to be filled in. If there are no partial sequences (you want to sample from the beginning), then pass partial_sequences=mtf.zeros(mesh, shape, dtype=tf.int32) and has_partial_sequences=False (so we can skip computation). Args: partial_sequences: an int32 Tensor with shape [<batch_dims>, length_dim] stop_at_token: an optional integer eos id. Stop when we produce it. max_steps: an optional integer, the max number of steps to decode. temperature: an optional floating point value between 0.0 and 1.0 0.0 means argmax, 1.0 means sample according to predicted distribution. variable_dtype: a mtf.VariableDType encoder_output: an optional Tensor encoder_sequence_id: an optional Tensor encoder_inputs: an optional Tensor shared_params: an optional dictionary has_partial_sequences: a boolean encoder_layer_outputs: optional - readonly list of tensor activations when decoding, one per each input layer + the embedding layer never_end: a boolean - if set, then avoid generating stop_at_token remove_partial_sequences: a boolean - whether to remove the partial sequences from the output sampling_keep_top_k: an integer - if not -1, only sample from the top k logits. bos_id: beginning of sequence id Returns: a Tensor with shape [<batch_dims>, length_dim] """ inputs = partial_sequences # Partial sequences to fill in batch_dims = inputs.shape.dims[:-1] length_dim = inputs.shape.dims[-1] padding_id = params.get("padding_id", 0) slow_sampling = params.get("slow_sampling", False) initial_position = mtf.reduce_sum( mtf.to_int32(mtf.not_equal(inputs, padding_id)), reduced_dim=length_dim) # Gets position where zero padding starts length_range = mtf.range(inputs.mesh, length_dim, tf.int32) input_full_attention = True # for now hardcode this to true bc lazy if input_full_attention: # Vanilla autoregressive model - each position can see previous positions. # Think this feeds in to the loop fn and tells each position where it can attend to? read_priority = write_priority = length_range * mtf.to_int32( mtf.greater(length_range, initial_position)) else: read_priority = write_priority = length_range # Builds context to pass around internally # The 'first part' context records initial states of k / v / x if not slow_sampling: context_first_part = mtf_transformer.transformer.Context( model=None, mesh=inputs.mesh, batch_dims=batch_dims, length_dim=length_dim, variable_dtype=variable_dtype, mode="first_part", position=length_range, position_is_default=True, new_states=[], initial_position=initial_position, sequence_id=None, encoder_output=encoder_output, encoder_sequence_id=encoder_sequence_id, constant_states=[], shared_params=shared_params, encoder_layer_outputs=encoder_layer_outputs, write_priority=write_priority, read_priority=read_priority, inputs=inputs, encoder_inputs=encoder_inputs) with tf.variable_scope("gpt2"): logits, _, _ = gpt2.model({"inputs": inputs}, other_features, params, inputs.mesh, variable_dtype=variable_dtype, context=context_first_part) if not has_partial_sequences: initial_states = [mtf.zeros_like(t) for t in context_first_part.new_states] else: initial_states = context_first_part.new_states else: initial_states = [] if not has_partial_sequences: partial_sequences_eos_count = 0 if stop_at_token is not None: partial_sequences_eos_count = mtf.reduce_sum( mtf.to_int32(mtf.equal(partial_sequences, stop_at_token)), reduced_dim=length_dim) def cond_fn(position, ids, *unused_states): """Should we run another loop iteration?""" past_end = mtf.greater_equal(position, length_dim.size) if max_steps: past_end = mtf.logical_or( past_end, mtf.greater_equal(position - initial_position, max_steps)) is_done = past_end if stop_at_token is not None: eos_count = mtf.reduce_sum( mtf.to_int32(mtf.equal(ids, stop_at_token)), reduced_dim=length_dim) has_additional_eos = mtf.greater(eos_count, partial_sequences_eos_count) is_done = mtf.logical_or(is_done, has_additional_eos) all_done = mtf.reduce_all(is_done) return mtf.logical_not(all_done) def body_fn(position, ids, *states): """One step in the decode loop.""" nonlocal sampling_keep_top_k context = mtf_transformer.transformer.Context( model=None, mesh=inputs.mesh, batch_dims=batch_dims, length_dim=length_dim, variable_dtype=variable_dtype, mode="incremental", position=position, position_is_default=True, states=states, new_states=[], initial_position=position, sequence_id=None, encoder_output=encoder_output, encoder_sequence_id=encoder_sequence_id, shared_params=shared_params, encoder_layer_outputs=encoder_layer_outputs, write_priority=write_priority, read_priority=read_priority, inputs=ids, encoder_inputs=encoder_inputs) if not slow_sampling else None with tf.variable_scope("gpt2", reuse=tf.AUTO_REUSE): logits, _, _ = gpt2.model({"inputs": ids}, other_features, params, inputs.mesh, variable_dtype=variable_dtype, context = context) if not sampling_use_entmax: # By default, do top_k sampling of 0.9 if sampling_keep_top_k == -2: sampling_keep_top_k = int(logits.shape[-1].size * 0.1) if sampling_keep_top_k != -1: if sampling_keep_top_k <= 0: raise ValueError("sampling_keep_top_k must either be -1 or positive.") k_largest = mtf.nth_largest_element( logits, n=sampling_keep_top_k, reduced_dim=other_features["vocab_dim"]) logits = mtf.where(mtf.less_equal(logits, k_largest), mtf.ones_like(logits) * -1e6, logits) ids_this_step = mtf.sample_with_temperature( logits, other_features["vocab_dim"], temperature) else: ids_this_step = sample_categorical(entmax(logits)) if slow_sampling: ids_this_step = mtf.shift(ids_this_step, offset=1, dim=length_dim, wrap=False) else: ids_this_step = mtf.reshape(ids_this_step, (batch_dims)) one_hot = mtf.one_hot(position, length_dim, dtype=tf.int32) one_new_id = ids_this_step * one_hot new_ids = (1 - one_hot) * ids + one_new_id new_position = position + 1 ret = [new_position, new_ids] if context is not None: ret += context.new_states return ret while_loop_inputs = [initial_position, inputs] + initial_states final_position, outputs = mtf.while_loop( cond_fn, body_fn, while_loop_inputs)[:2] del final_position if has_partial_sequences and remove_partial_sequences: # Remove partial sequences from outputs partial_length = mtf.reduce_sum( mtf.to_int32(mtf.not_equal(partial_sequences, padding_id)), reduced_dim=length_dim) outputs = mtf.dynamic_shift( outputs, -partial_length, length_dim, wrap=False) return outputs
def gpt2_model(features, labels, mode, params): from models.gpt2 import gpt2 if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL: if params["precision"] == 'bfloat16': with tf.compat.v1.tpu.bfloat16_scope(): output = gpt2.model(X=features, params=params, labels=labels, past=None, reuse=tf.compat.v1.AUTO_REUSE, train=mode==tf.estimator.ModeKeys.TRAIN) output["logits"] = tf.cast(output["logits"], tf.float32) else: output = gpt2.model(X=features, params=params, labels=labels, past=None, reuse=tf.compat.v1.AUTO_REUSE, train=mode==tf.estimator.ModeKeys.TRAIN) loss_batch = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=output["logits"], labels=labels) loss = tf.reduce_mean(input_tensor=loss_batch) if mode == tf.estimator.ModeKeys.TRAIN: train_op = create_train_op(loss, params) if params["use_tpu"]: return tf.compat.v1.estimator.tpu.TPUEstimatorSpec(mode, loss=loss, train_op=train_op) else: return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) if mode == tf.estimator.ModeKeys.EVAL: from metric_fns import perplexity_metric if params["use_tpu"]: # Metric inputs are transferred to CPU and must preserve batch dimension return tf.compat.v1.estimator.tpu.TPUEstimatorSpec(mode=mode, loss=loss, eval_metrics=(perplexity_metric, {"loss": loss_batch})) else: return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=perplexity_metric(loss_batch)) if mode == tf.estimator.ModeKeys.PREDICT: from models.gpt2 import sample if not "top_k" in params.keys(): params["top_k"] = 0 output = sample.sample_sequence( params=params, length=params["n_ctx"], context=features, batch_size=params["batch_size"], temperature=1.0, top_k=params["top_k"] ) predictions = { "tokens": output } if params["use_tpu"]: return tf.compat.v1.estimator.tpu.TPUEstimatorSpec(mode, predictions=predictions) else: return tf.estimator.EstimatorSpec(mode, predictions=predictions)
def body_fn(position, ids, *states): """One step in the decode loop.""" nonlocal sampling_keep_top_k context = mtf_transformer.transformer.Context( model=None, mesh=inputs.mesh, batch_dims=batch_dims, length_dim=length_dim, variable_dtype=variable_dtype, mode="incremental", position=position, position_is_default=True, states=states, new_states=[], initial_position=position, sequence_id=None, encoder_output=encoder_output, encoder_sequence_id=encoder_sequence_id, shared_params=shared_params, encoder_layer_outputs=encoder_layer_outputs, write_priority=write_priority, read_priority=read_priority, inputs=ids, encoder_inputs=encoder_inputs) if not slow_sampling else None with tf.variable_scope("gpt2", reuse=tf.AUTO_REUSE): logits, _, _ = gpt2.model({"inputs": ids}, other_features, params, inputs.mesh, variable_dtype=variable_dtype, context = context) if not sampling_use_entmax: # By default, do top_k sampling of 0.9 if sampling_keep_top_k == -2: sampling_keep_top_k = int(logits.shape[-1].size * 0.1) if sampling_keep_top_k != -1: if sampling_keep_top_k <= 0: raise ValueError("sampling_keep_top_k must either be -1 or positive.") k_largest = mtf.nth_largest_element( logits, n=sampling_keep_top_k, reduced_dim=other_features["vocab_dim"]) logits = mtf.where(mtf.less_equal(logits, k_largest), mtf.ones_like(logits) * -1e6, logits) ids_this_step = mtf.sample_with_temperature( logits, other_features["vocab_dim"], temperature) else: ids_this_step = sample_categorical(entmax(logits)) if slow_sampling: ids_this_step = mtf.shift(ids_this_step, offset=1, dim=length_dim, wrap=False) else: ids_this_step = mtf.reshape(ids_this_step, (batch_dims)) one_hot = mtf.one_hot(position, length_dim, dtype=tf.int32) one_new_id = ids_this_step * one_hot new_ids = (1 - one_hot) * ids + one_new_id new_position = position + 1 ret = [new_position, new_ids] if context is not None: ret += context.new_states return ret