def fetch_data(frame_idx): cam_rgb_points = dataset.get_cam_points_in_image_with_rgb(frame_idx, config['downsample_by_voxel_size']) box_label_list = dataset.get_label(frame_idx) if 'crop_aug' in train_config: cam_rgb_points, box_label_list = sampler.crop_aug(cam_rgb_points, box_label_list, sample_rate=train_config['crop_aug']['sample_rate'], parser_kwargs=train_config['crop_aug']['parser_kwargs']) cam_rgb_points, box_label_list = aug_fn(cam_rgb_points, box_label_list) graph_generate_fn= get_graph_generate_fn(config['graph_gen_method']) (vertex_coord_list, keypoint_indices_list, edges_list) = \ graph_generate_fn(cam_rgb_points.xyz, **config['graph_gen_kwargs']) if config['input_features'] == 'irgb': input_v = cam_rgb_points.attr elif config['input_features'] == '0rgb': input_v = np.hstack([np.zeros((cam_rgb_points.attr.shape[0], 1)), cam_rgb_points.attr[:, 1:]]) elif config['input_features'] == '0000': input_v = np.zeros_like(cam_rgb_points.attr) elif config['input_features'] == 'i000': input_v = np.hstack([cam_rgb_points.attr[:, [0]], np.zeros((cam_rgb_points.attr.shape[0], 3))]) elif config['input_features'] == 'i': input_v = cam_rgb_points.attr[:, [0]] elif config['input_features'] == '0': input_v = np.zeros((cam_rgb_points.attr.shape[0], 1)) last_layer_graph_level = config['model_kwargs'][ 'layer_configs'][-1]['graph_level'] last_layer_points_xyz = vertex_coord_list[last_layer_graph_level+1] if config['label_method'] == 'yaw': cls_labels, boxes_3d, valid_boxes, label_map = \ dataset.assign_classaware_label_to_points(box_label_list, last_layer_points_xyz, expend_factor=train_config.get('expend_factor', (1.0, 1.0, 1.0))) if config['label_method'] == 'Car': cls_labels, boxes_3d, valid_boxes, label_map = \ dataset.assign_classaware_car_label_to_points(box_label_list, last_layer_points_xyz, expend_factor=train_config.get('expend_factor', (1.0, 1.0, 1.0))) if config['label_method'] == 'Pedestrian_and_Cyclist': (cls_labels, boxes_3d, valid_boxes, label_map) =\ dataset.assign_classaware_ped_and_cyc_label_to_points( box_label_list, last_layer_points_xyz, expend_factor=train_config.get('expend_factor', (1.0, 1.0, 1.0))) encoded_boxes = box_encoding_fn(cls_labels, last_layer_points_xyz, boxes_3d, label_map) input_v = input_v.astype(np.float32) vertex_coord_list = [p.astype(np.float32) for p in vertex_coord_list] keypoint_indices_list = [e.astype(np.int32) for e in keypoint_indices_list] edges_list = [e.astype(np.int32) for e in edges_list] cls_labels = cls_labels.astype(np.int32) encoded_boxes = encoded_boxes.astype(np.float32) valid_boxes = valid_boxes.astype(np.float32) return(input_v, vertex_coord_list, keypoint_indices_list, edges_list, cls_labels, encoded_boxes, valid_boxes)
def fetch_data(frame_idx): cam_points = dataset.get_cam_points_in_image( frame_idx, config['downsample_by_voxel_size']) box_label_list = dataset.get_label(frame_idx) cam_points, box_label_list = aug_fn(cam_points, box_label_list) graph_generate_fn = get_graph_generate_fn(config['graph_gen_method']) (vertex_coord_list, keypoint_indices_list, edges_list) = graph_generate_fn(cam_points.xyz, **config['graph_gen_kwargs']) input_v = cam_points.attr[:, [0]] last_layer_graph_level = config['model_kwargs']['layer_configs'][-1][ 'graph_level'] last_layer_points_xyz = vertex_coord_list[last_layer_graph_level + 1] if config['label_method'] == 'yaw': (cls_labels, boxes_3d, valid_boxes, label_map) =\ dataset.assign_classaware_label_to_points(box_label_list, last_layer_points_xyz, expend_factor=(1.0, 1.0, 1.0)) if config['label_method'] == 'Car': cls_labels, boxes_3d, valid_boxes, label_map =\ dataset.assign_classaware_car_label_to_points(box_label_list, last_layer_points_xyz, expend_factor=(1.0, 1.0, 1.0)) if config['label_method'] == 'Pedestrian_and_Cyclist': cls_labels, boxes_3d, valid_boxes, label_map =\ dataset.assign_classaware_ped_and_cyc_label_to_points( box_label_list, last_layer_points_xyz, expend_factor=(1.0, 1.0, 1.0)) encoded_boxes = box_encoding_fn(cls_labels, last_layer_points_xyz, boxes_3d, label_map) # reducing memory usage by casting to 32bits input_v = input_v.astype(np.float32) vertex_coord_list = [p.astype(np.float32) for p in vertex_coord_list] keypoint_indices_list = [e.astype(np.int32) for e in keypoint_indices_list] edges_list = [e.astype(np.int32) for e in edges_list] cls_labels = cls_labels.astype(np.int32) encoded_boxes = encoded_boxes.astype(np.float32) valid_boxes = valid_boxes.astype(np.float32) return (input_v, vertex_coord_list, keypoint_indices_list, edges_list, cls_labels, encoded_boxes, valid_boxes)
start_time = time.time() if VISUALIZATION_LEVEL == 2: pcd = open3d.PointCloud() line_set = open3d.LineSet() graph_line_set = open3d.LineSet() # provide input ====================================================== cam_rgb_points = dataset.get_cam_points_in_image_with_rgb( frame_idx, config['downsample_by_voxel_size']) calib = dataset.get_calib(frame_idx) image = dataset.get_image(frame_idx) if not IS_TEST: box_label_list = dataset.get_label(frame_idx) input_time = time.time() time_dict['fetch input'] = time_dict.get('fetch input', 0) \ + input_time - start_time graph_generate_fn = get_graph_generate_fn(config['graph_gen_method']) (vertex_coord_list, keypoint_indices_list, edges_list) = \ graph_generate_fn( cam_rgb_points.xyz, **config['runtime_graph_gen_kwargs']) graph_time = time.time() time_dict['gen graph'] = time_dict.get('gen graph', 0) \ + graph_time - input_time if config['input_features'] == 'irgb': input_v = cam_rgb_points.attr elif config['input_features'] == '0rgb': input_v = np.hstack([ np.zeros((cam_rgb_points.attr.shape[0], 1)), cam_rgb_points.attr[:, 1:] ]) elif config['input_features'] == '0000': input_v = np.zeros_like(cam_rgb_points.attr)