def __init__(self, in_planes, planes, stride=1, test=False): super(Bottleneck, self).__init__() self.test = test self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion * planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes)) # Gate layers self.w = nn.Parameter(torch.cuda.FloatTensor([.1, 4]).view((2, 1, 1))) self.gs = GumbleSoftmax() self.gs.cuda()
def __init__(self, in_planes, planes, stride=1, test=False): super(BasicBlock, self).__init__() self.test = test self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) # Gate layers self.fc1 = nn.Conv2d(in_planes, 16, kernel_size=1) self.fc1bn = nn.BatchNorm1d(16) self.fc2 = nn.Conv2d(16, 2, kernel_size=1) # initialize the bias of the last fc for # initial opening rate of the gate of about 85% self.fc2.bias.data[0] = 0.1 self.fc2.bias.data[1] = 2 self.gs = GumbleSoftmax() self.gs.cuda()
class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1, test=False): super(BasicBlock, self).__init__() self.test = test self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes)) # Gate layers self.w = nn.Parameter(torch.cuda.FloatTensor([.1, 4]).view((2, 1, 1))) self.gs = GumbleSoftmax() self.gs.cuda() def forward(self, x, temperature=1): # Compute relevance score w = self.w w = w.expand(x.shape[0], 2, 1, 1) w = self.gs(w, temp=temperature, force_hard=True) # TODO(chi): Write the test code #print(w[:,1].unsqueeze(1)) #if self.test and w[:,1].unsqueeze(1) == 0: # out = self.shortcut(x) # return out, w[:,1] out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out = self.shortcut(x) + out * w[:, 1].unsqueeze(1) out = F.relu(out) # Return output of layer and the value of the gate # The value of the gate will be used in the target rate loss return out, w[:, 1]
class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1, test=False): super(Bottleneck, self).__init__() self.test = test self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion*planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) # Gate layers self.fc1 = nn.Conv2d(in_planes, 16, kernel_size=1) self.fc1bn = nn.BatchNorm1d(16) self.fc2 = nn.Conv2d(16, 2, kernel_size=1) # initialize the bias of the last fc for # initial opening rate of the gate of about 85% self.fc2.bias.data[0] = 0.1 self.fc2.bias.data[1] = 2 self.gs = GumbleSoftmax() self.gs.cuda() def forward(self, x, temperature=1): # Compute relevance score w = F.avg_pool2d(x, x.size(2)) w = F.relu(self.fc1bn(self.fc1(w))) w = self.fc2(w) # Sample from Gumble Module w = self.gs(w, temp=temperature, force_hard=True) # TODO(chi): For fast inference, check decision of gate and jump right # to the next layer if needed. #if self.test and w[:,1].unsqueeze(1) == 0: # out = self.shortcut(x) # return out, w[:, 1] out = F.relu(self.bn1(self.conv1(x)), inplace=True) out = F.relu(self.bn2(self.conv2(out)), inplace=True) out = self.bn3(self.conv3(out)) out = self.shortcut(x) + out * w[:,1].unsqueeze(1) out = F.relu(out, inplace=True) # Return output of layer and the value of the gate # The value of the gate will be used in the target rate loss return out, w[:, 1]
def __init__(self, num_gates_fixed_open, num_gates, num_filters_per_gate): super(SpecialGumble, self).__init__() self.num_gates_fixed_open = num_gates_fixed_open self.num_gates = num_gates self.num_filters_per_gate = num_filters_per_gate self.gs = GumbleSoftmax()
def __init__(self, shape, unit_test_init=False): super(GumbleRelu, self).__init__() self.gs = GumbleSoftmax() self.fc1_weights = nn.Parameter(torch.zeros( (1, shape[1], shape[2], shape[3], 1)), requires_grad=True) self.fc1_bias_initial = nn.Parameter(torch.zeros( (1, shape[1], shape[2], shape[3], 1)), requires_grad=True) self.fc1_bias = nn.Parameter(torch.zeros( (1, shape[1], shape[2], shape[3], 2)), requires_grad=True) if unit_test_init: self.fc1_weights.data.fill_(0.1) self.fc1_bias.data.fill_(0.1) else: torch.nn.init.xavier_uniform(self.fc1_weights) self.fc1_bias.data[:, :, :, :, 1] = 4
class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1, test=False): super(BasicBlock, self).__init__() self.test = test self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) # Gate layers self.fc1 = nn.Conv2d(in_planes, 16, kernel_size=1) self.fc1bn = nn.BatchNorm1d(16) self.fc2 = nn.Conv2d(16, 2, kernel_size=1) # initialize the bias of the last fc for # initial opening rate of the gate of about 85% self.fc2.bias.data[0] = 0.1 self.fc2.bias.data[1] = 2 self.gs = GumbleSoftmax() self.gs.cuda() def forward(self, x, temperature=1, gate_mode='stochastic'): assert(gate_mode in ['stochastic', 'always_on', 'argmax']) # Compute relevance score w = F.avg_pool2d(x, x.size(2)) w = F.relu(self.fc1bn(self.fc1(w))) w = self.fc2(w) # Sample from Gumble Module # print 'fc before gumble', w.shape if gate_mode == "argmax": _, max_value_indexes = w.data.max(1, keepdim=True) #max_values_indices is batchsize x 1 and is 0 or 1. output_multiplier = max_value_indexes.unsqueeze(1) elif gate_mode == "stochastic": w = self.gs(w, temp=temperature, force_hard=True) output_multiplier = w[:,1].unsqueeze(1) elif gate_mode == "always_on": output_multiplier = torch.ones(w[:,1].unsqueeze(1).size()) else: assert(False) # Error: added a possible gate mode without implementing it. # TODO(chi): Write the test code #print(w[:,1].unsqueeze(1)) #if self.test and w[:,1].unsqueeze(1) == 0: # out = self.shortcut(x) # return out, w[:,1] out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out = self.shortcut(x) + out * output_multiplier out = F.relu(out) # Return output of layer and the value of the gate # The value of the gate will be used in the target rate loss return out, output_multiplier.squeeze(1)
class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1, test=False): super(Bottleneck, self).__init__() self.test = test self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion*planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) # Gate layers self.fc1 = nn.Conv2d(in_planes, 16, kernel_size=1) self.fc1bn = nn.BatchNorm1d(16) self.fc2 = nn.Conv2d(16, 2, kernel_size=1) # initialize the bias of the last fc for # initial opening rate of the gate of about 85% self.fc2.bias.data[0] = 0.1 self.fc2.bias.data[1] = 2 self.gs = GumbleSoftmax() self.gs.cuda() def forward(self, x, temperature=1, gate_mode='stochastic', threshold=.5): assert(gate_mode in ['stochastic', 'always_on', 'argmax']) # Compute relevance score w = F.avg_pool2d(x, x.size(2)) w1bn = self.fc1(w) w = self.fc1bn(w1bn) w = F.relu(w) w = self.fc2(w) out = F.relu(self.bn1(self.conv1(x)), inplace=True) out = F.relu(self.bn2(self.conv2(out)), inplace=True) out = self.bn3(self.conv3(out)) if gate_mode == "argmax": _, max_value_indexes = w.data.max(1, keepdim=True) #max_values_indices is batchsize x 1 and is 0 or 1. output_multiplier = torch.autograd.Variable(max_value_indexes.float(), volatile=True) elif gate_mode == 'threshold': output_multiplier = torch.autograd.Variable(torch.gt(w[:,1], threshold).unsqueeze(1), volatile=True) elif gate_mode == "stochastic": w = self.gs(w, temp=temperature, force_hard=True) output_multiplier = w[:,1].unsqueeze(1) elif gate_mode == "always_on": output_multiplier = torch.autograd.Variable(torch.ones(w[:,1].unsqueeze(1).size()).cuda(), volatile=True) else: assert(False) # Error: added a possible gate mode without implementing it. out = self.shortcut(x) + out * output_multiplier out = F.relu(out, inplace=True) # Return output of layer and the value of the gate # The value of the gate will be used in the target rate loss return out, output_multiplier.squeeze(1), w1bn
class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1, test=False): super(Bottleneck, self).__init__() self.test = test self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion * planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes)) # Gate layers self.w = nn.Parameter(torch.cuda.FloatTensor([.1, 4]).view((2, 1, 1))) self.gs = GumbleSoftmax() self.gs.cuda() def forward(self, x, temperature=1, gate_mode='stochastic', prob=1): assert (gate_mode in [ 'stochastic', 'always_on', 'argmax', 'stochastic-variable' ]) # Compute relevance score w = self.w w = w.expand(x.shape[0], 2, 1, 1) out = F.relu(self.bn1(self.conv1(x)), inplace=True) out = F.relu(self.bn2(self.conv2(out)), inplace=True) out = self.bn3(self.conv3(out)) if gate_mode == "argmax": _, max_value_indexes = w.data.max( 1, keepdim=True ) #max_values_indices is batchsize x 1 and is 0 or 1. output_multiplier = torch.autograd.Variable( max_value_indexes.float(), volatile=True) # output_on = output_multiplier elif gate_mode == "stochastic": w = self.gs(w, temp=temperature, force_hard=True) output_multiplier = w[:, 1].unsqueeze(1) # output_on = output_multiplier elif gate_mode == "stochastic-variable": w_prob = self.gs(w * prob, temp=temperature, force_hard=True) w = self.gs(w_prob, temp=temperature, force_hard=True) output_multiplier = w[:, 1].unsqueeze(1) # w = w.detach() # w_soft, w_soft_index = self.gs.gumbel_softmax_sample(w, temperature).data.max(1, keepdim=True) # wprob_soft, _ = self.gs.gumbel_softmax_sample(w*prob, temperature).data.max(1, keepdim=True) # print 'w_soft', w_soft # print 'wprob_soft', wprob_soft # exit(1) # print w_soft # not_output_multiplier = torch.autograd.Variable(torch.ones(output_multiplier.size()).cuda(), volatile=True) - output_multiplier # not_coeff = torch.autograd.Variable(w_soft / (torch.ones_like(w_soft) - w_soft), volatile=True) # not_coeff.requires_grad = False # out = out.detach() # shortcut_x = self.shortcut(x) # shortcut_x = shortcut_x.detach() # print 'shapes', shortcut_x.shape, out.shape, output_multiplier.shape, not_output_multiplier.shape, not_coeff.shape elif gate_mode == "always_on": # w_soft = torch.autograd.Variable(self.gs.gumbel_softmax_sample(w, temperature).data, volatile=True) # print 'w_soft.shape', w_soft.shape output_multiplier = torch.autograd.Variable( torch.ones(out.size()).cuda(), volatile=True) # * w_soft[:,1].unsqueeze(1) # output_on = torch.autograd.Variable(torch.ones(out.size()).cuda(), volatile=True) else: assert ( False ) # Error: added a possible gate mode without implementing it. # if gate_mode != 'stochastic-variable': out = self.shortcut(x) + out * output_multiplier out = F.relu(out, inplace=True) # Return output of layer and the value of the gate # The value of the gate will be used in the target rate loss return out, output_multiplier.squeeze(1)