def __init__(self, model_config: dict):
     super().__init__()
     model_config = Dict(model_config)
     backbone_type = model_config.backbone.pop('type')
     neck_type = model_config.neck.pop('type')
     head_type = model_config.head.pop('type')
     self.backbone = build_backbone(backbone_type, **model_config.backbone)
     self.neck = build_neck(neck_type, in_channels=self.backbone.out_channels, **model_config.neck)
     self.head = build_head(head_type, in_channels=self.neck.out_channels, **model_config.head)
     self.name = f'{backbone_type}_{neck_type}_{head_type}'
Exemple #2
0
 def __init__(self, model_config: dict):
     """
     PANnet
     :param model_config: 模型配置
     """
     super().__init__()
     model_config = Dict(model_config)
     backbone_type = model_config.backbone.pop('type')
     neck_type = model_config.neck.pop('type')
     head_type = model_config.head.pop('type')
     self.normalize = Normalize([0.485 * 255, 0.456 * 255, 0.406 * 255],
                                [0.229 * 255, 0.224 * 255, 0.225 * 255])
     self.backbone = build_backbone(backbone_type, **model_config.backbone)
     self.neck = build_neck(neck_type,
                            in_channels=self.backbone.out_channels,
                            **model_config.neck)
     self.head = build_head(head_type,
                            in_channels=self.neck.out_channels,
                            **model_config.head)
     self.name = f'{backbone_type}_{neck_type}_{head_type}'
 def __init__(
     self,
     num_classes,
     backbone='resnet50',
     pretrained=True,
     pooling='avg_pooling',
     pooling_size=1,
     head='BNHead',
     bn_where='after',
     batch_norm_bias=True,
     use_tqdm=True,
     is_inference=False):
     
     super(Baseline, self).__init__()
     self.head_name = head
     self.num_classes = num_classes
     self.is_inference = is_inference
     
     self.backbone, feature_dim = build_backbone(backbone, pretrained=pretrained, progress=use_tqdm)
     self.global_pooling = build_pooling(pooling, pooling_size)
     self.head = build_head(head, feature_dim, self.num_classes, bias_freeze=not batch_norm_bias, bn_where=bn_where, pooling_size=pooling_size)