Exemple #1
0
    def encode(self, indices, lengths, noise):
        embeddings = self.embedding(indices)
        packed_embeddings = pack_padded_sequence(input=embeddings,
                                                 lengths=lengths,
                                                 batch_first=True)

        # Encode
        packed_output, state = self.encoder(packed_embeddings)

        hidden, cell = state
        # batch_size x nhidden
        hidden = hidden[-1]  # get hidden state of last layer of encoder

        # normalize to unit ball (l2 norm of 1) - p=2, dim=1
        norms = torch.norm(hidden, 2, 1)

        # For older versions of PyTorch use:
        hidden = torch.div(hidden, norms.expand_as(hidden))
        # For newest version of PyTorch (as of 8/25) use this:
        # hidden = torch.div(hidden, norms.unsqueeze(1).expand_as(hidden))

        if noise and self.noise_r > 0:
            #            gauss_noise = torch.normal(means=torch.zeros(hidden.size()),
            #                                       std=self.noise_r)

            gauss_noise = Normal(torch.zeros(hidden.size()), self.noise_r)

            hidden = hidden + to_gpu(self.gpu, Variable(gauss_noise.sample()))

        return hidden
Exemple #2
0
    def __init__(self,
                 emsize,
                 nhidden,
                 ntokens,
                 nlayers,
                 noise_r=0.2,
                 share_decoder_emb=False,
                 hidden_init=False,
                 dropout=0,
                 gpu=False):
        super(Seq2Seq2Decoder, self).__init__()
        self.nhidden = nhidden
        self.emsize = emsize
        self.ntokens = ntokens
        self.nlayers = nlayers
        self.noise_r = noise_r
        self.hidden_init = hidden_init
        self.dropout = dropout
        self.gpu = gpu

        self.start_symbols = to_gpu(gpu, Variable(torch.ones(10, 1).long()))

        # Vocabulary embedding
        self.embedding = nn.Embedding(ntokens, emsize)
        self.embedding_decoder1 = nn.Embedding(ntokens, emsize)
        self.embedding_decoder2 = nn.Embedding(ntokens, emsize)

        # RNN Encoder and Decoder
        self.encoder = nn.LSTM(input_size=emsize,
                               hidden_size=nhidden,
                               num_layers=nlayers,
                               dropout=dropout,
                               batch_first=True)

        decoder_input_size = emsize + nhidden
        self.decoder1 = nn.LSTM(input_size=decoder_input_size,
                                hidden_size=nhidden,
                                num_layers=1,
                                dropout=dropout,
                                batch_first=True)
        self.decoder2 = nn.LSTM(input_size=decoder_input_size,
                                hidden_size=nhidden,
                                num_layers=1,
                                dropout=dropout,
                                batch_first=True)

        # Initialize Linear Transformation
        self.linear = nn.Linear(nhidden, ntokens)

        self.init_weights()

        if share_decoder_emb:
            self.embedding_decoder2.weight = self.embedding_decoder1.weight

        self.softmax = nn.Softmax(dim=1)
Exemple #3
0
    def generate(self, whichdecoder, hidden, maxlen, sample=False, temp=1.0):
        """Generate through decoder; no backprop"""

        batch_size = hidden.size(0)

        if self.hidden_init:
            # initialize decoder hidden state to encoder output
            state = (hidden.unsqueeze(0), self.init_state(batch_size))
        else:
            state = self.init_hidden(batch_size)

        # <sos>
        self.start_symbols.data.resize_(batch_size, 1)
        self.start_symbols.data.fill_(1)
        self.start_symbols = to_gpu(self.gpu, self.start_symbols)

        if whichdecoder == 1:
            embedding = self.embedding_decoder1(self.start_symbols)
        else:
            embedding = self.embedding_decoder2(self.start_symbols)

        inputs = torch.cat([embedding, hidden.unsqueeze(1)], 2)

        # unroll
        all_indices = []
        all_vals = []
        for i in range(maxlen):
            if whichdecoder == 1:
                output, state = self.decoder1(inputs, state)
            else:
                output, state = self.decoder2(inputs, state)
            overvocab = self.linear(output.squeeze(1))

            if not sample:
                vals, indices = torch.max(self.softmax(overvocab), 1)

                indices = indices.unsqueeze(1)
            else:
                assert 1 == 0
                # sampling
                probs = F.softmax(overvocab / temp)
                indices = torch.multinomial(probs, 1)

            all_vals.append(vals.item())
            all_indices.append(indices)

            if whichdecoder == 1:
                embedding = self.embedding_decoder1(indices)
            else:
                embedding = self.embedding_decoder2(indices)
            inputs = torch.cat([embedding, hidden.unsqueeze(1)], 2)

        max_indices = torch.cat(all_indices, 1)

        return max_indices, all_vals
Exemple #4
0
 def init_state(self, bsz):
     zeros = Variable(torch.zeros(self.nlayers, bsz, self.nhidden))
     return to_gpu(self.gpu, zeros)
Exemple #5
0
 def init_hidden(self, bsz):
     zeros1 = Variable(torch.zeros(self.nlayers, bsz, self.nhidden))
     zeros2 = Variable(torch.zeros(self.nlayers, bsz, self.nhidden))
     return (to_gpu(self.gpu, zeros1), to_gpu(self.gpu, zeros2))