def _build_sampler(self, **kwargs): d = dict() c_dim = self.X.shape[-1] output_dim_H, output_dim_W = (self.X.shape[1], self.X.shape[2]) kernel_size = (5, 5) fc_channel = kwargs.pop('G_FC_layer_channel', 1024) G_channel = kwargs.pop('G_channel', 64) with tf.variable_scope("generator") as scope: scope.reuse_variables() z_input = self.z d['layer_1'] = fc_layer(z_input, 4 * 4 * fc_channel) d['reshape'] = tf.nn.relu( batchNormalization( tf.reshape(d['layer_1'], [-1, 4, 4, fc_channel]), self.is_train)) d['layer_2'] = deconv_bn_relu(d['reshape'], G_channel * 4, kernel_size, self.is_train, strides=(2, 2)) d['layer_3'] = deconv_bn_relu(d['layer_2'], G_channel * 2, kernel_size, self.is_train, strides=(2, 2)) d['layer_4'] = deconv_bn_relu(d['layer_3'], G_channel, kernel_size, self.is_train, strides=(2, 2)) d['layer_5'] = deconv_bn_relu(d['layer_4'], c_dim, kernel_size, self.is_train, strides=(2, 2), bn=False, relu=False) d['tanh'] = tf.nn.tanh(d['layer_5']) return d['tanh']
def _build_model(self, **kwargs): """ Build model. :param kwargs: dict, extra arguments for building YOLO. -image_mean: np.ndarray, mean image for each input channel, shape: (C,). :return d: dict, containing outputs on each layer. """ d = dict() x_mean = kwargs.pop('image_mean', 0.0) # input X_input = self.X - x_mean is_train = self.is_train #conv1 - batch_norm1 - leaky_relu1 - pool1 with tf.variable_scope('layer1'): d['conv1'] = conv_layer(X_input, 3, 1, 32, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm1'] = batchNormalization(d['conv1'], is_train) d['leaky_relu1'] = tf.nn.leaky_relu(d['batch_norm1'], alpha=0.1) d['pool1'] = max_pool(d['leaky_relu1'], 2, 2, padding='SAME') # (416, 416, 3) --> (208, 208, 32) print('layer1.shape', d['pool1'].get_shape().as_list()) #conv2 - batch_norm2 - leaky_relu2 - pool2 with tf.variable_scope('layer2'): d['conv2'] = depth_point_layer(d['pool1'], 3, 1, 64, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm2'] = batchNormalization(d['conv2'], is_train) d['leaky_relu2'] = tf.nn.leaky_relu(d['batch_norm2'], alpha=0.1) d['pool2'] = max_pool(d['leaky_relu2'], 2, 2, padding='SAME') # (208, 208, 32) --> (104, 104, 64) print('layer2.shape', d['pool2'].get_shape().as_list()) #conv3 - batch_norm3 - leaky_relu3 with tf.variable_scope('layer3'): d['conv3'] = depth_point_layer(d['pool2'], 3, 1, 128, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm3'] = batchNormalization(d['conv3'], is_train) d['leaky_relu3'] = tf.nn.leaky_relu(d['batch_norm3'], alpha=0.1) # (104, 104, 64) --> (104, 104, 128) print('layer3.shape', d['leaky_relu3'].get_shape().as_list()) #conv4 - batch_norm4 - leaky_relu4 with tf.variable_scope('layer4'): d['conv4'] = conv_layer(d['leaky_relu3'], 1, 1, 64, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm4'] = batchNormalization(d['conv4'], is_train) d['leaky_relu4'] = tf.nn.leaky_relu(d['batch_norm4'], alpha=0.1) # (104, 104, 128) --> (104, 104, 64) print('layer4.shape', d['leaky_relu4'].get_shape().as_list()) #conv5 - batch_norm5 - leaky_relu5 - pool5 with tf.variable_scope('layer5'): d['conv5'] = depth_point_layer(d['leaky_relu4'], 3, 1, 128, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm5'] = batchNormalization(d['conv5'], is_train) d['leaky_relu5'] = tf.nn.leaky_relu(d['batch_norm5'], alpha=0.1) d['pool5'] = max_pool(d['leaky_relu5'], 2, 2, padding='SAME') # (104, 104, 64) --> (52, 52, 128) print('layer5.shape', d['pool5'].get_shape().as_list()) #conv6 - batch_norm6 - leaky_relu6 with tf.variable_scope('layer6'): d['conv6'] = depth_point_layer(d['pool5'], 3, 1, 256, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm6'] = batchNormalization(d['conv6'], is_train) d['leaky_relu6'] = tf.nn.leaky_relu(d['batch_norm6'], alpha=0.1) # (52, 52, 128) --> (52, 52, 256) print('layer6.shape', d['leaky_relu6'].get_shape().as_list()) #conv7 - batch_norm7 - leaky_relu7 with tf.variable_scope('layer7'): d['conv7'] = conv_layer(d['leaky_relu6'], 1, 1, 128, padding='SAME', weights_stddev=0.01, biases_value=0.0) d['batch_norm7'] = batchNormalization(d['conv7'], is_train) d['leaky_relu7'] = tf.nn.leaky_relu(d['batch_norm7'], alpha=0.1) # (52, 52, 256) --> (52, 52, 128) print('layer7.shape', d['leaky_relu7'].get_shape().as_list()) #conv8 - batch_norm8 - leaky_relu8 - pool8 with tf.variable_scope('layer8'): d['conv8'] = depth_point_layer(d['leaky_relu7'], 3, 1, 256, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm8'] = batchNormalization(d['conv8'], is_train) d['leaky_relu8'] = tf.nn.leaky_relu(d['batch_norm8'], alpha=0.1) d['pool8'] = max_pool(d['leaky_relu8'], 2, 2, padding='SAME') # (52, 52, 128) --> (26, 26, 256) print('layer8.shape', d['pool8'].get_shape().as_list()) #conv9 - batch_norm9 - leaky_relu9 with tf.variable_scope('layer9'): d['conv9'] = depth_point_layer(d['pool8'], 3, 1, 512, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm9'] = batchNormalization(d['conv9'], is_train) d['leaky_relu9'] = tf.nn.leaky_relu(d['batch_norm9'], alpha=0.1) # (26, 26, 256) --> (26, 26, 512) print('layer9.shape', d['leaky_relu9'].get_shape().as_list()) #conv10 - batch_norm10 - leaky_relu10 with tf.variable_scope('layer10'): d['conv10'] = conv_layer(d['leaky_relu9'], 1, 1, 256, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm10'] = batchNormalization(d['conv10'], is_train) d['leaky_relu10'] = tf.nn.leaky_relu(d['batch_norm10'], alpha=0.1) # (26, 26, 512) --> (26, 26, 256) print('layer10.shape', d['leaky_relu10'].get_shape().as_list()) #conv11 - batch_norm11 - leaky_relu11 with tf.variable_scope('layer11'): d['conv11'] = depth_point_layer(d['leaky_relu10'], 3, 1, 512, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm11'] = batchNormalization(d['conv11'], is_train) d['leaky_relu11'] = tf.nn.leaky_relu(d['batch_norm11'], alpha=0.1) # (26, 26, 256) --> (26, 26, 512) print('layer11.shape', d['leaky_relu11'].get_shape().as_list()) #conv12 - batch_norm12 - leaky_relu12 with tf.variable_scope('layer12'): d['conv12'] = conv_layer(d['leaky_relu11'], 1, 1, 256, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm12'] = batchNormalization(d['conv12'], is_train) d['leaky_relu12'] = tf.nn.leaky_relu(d['batch_norm12'], alpha=0.1) # (26, 26, 512) --> (26, 26, 256) print('layer12.shape', d['leaky_relu12'].get_shape().as_list()) #conv13 - batch_norm13 - leaky_relu13 - pool13 with tf.variable_scope('layer13'): d['conv13'] = depth_point_layer(d['leaky_relu12'], 3, 1, 512, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm13'] = batchNormalization(d['conv13'], is_train) d['leaky_relu13'] = tf.nn.leaky_relu(d['batch_norm13'], alpha=0.1) d['pool13'] = max_pool(d['leaky_relu13'], 2, 2, padding='SAME') # (26, 26, 256) --> (13, 13, 512) print('layer13.shape', d['pool13'].get_shape().as_list()) #conv14 - batch_norm14 - leaky_relu14 with tf.variable_scope('layer14'): d['conv14'] = depth_point_layer(d['pool13'], 3, 1, 1024, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm14'] = batchNormalization(d['conv14'], is_train) d['leaky_relu14'] = tf.nn.leaky_relu(d['batch_norm14'], alpha=0.1) # (13, 13, 512) --> (13, 13, 1024) print('layer14.shape', d['leaky_relu14'].get_shape().as_list()) #conv15 - batch_norm15 - leaky_relu15 with tf.variable_scope('layer15'): d['conv15'] = conv_layer(d['leaky_relu14'], 1, 1, 512, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm15'] = batchNormalization(d['conv15'], is_train) d['leaky_relu15'] = tf.nn.leaky_relu(d['batch_norm15'], alpha=0.1) # (13, 13, 1024) --> (13, 13, 512) print('layer15.shape', d['leaky_relu15'].get_shape().as_list()) #conv16 - batch_norm16 - leaky_relu16 with tf.variable_scope('layer16'): d['conv16'] = depth_point_layer(d['leaky_relu15'], 3, 1, 1024, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm16'] = batchNormalization(d['conv16'], is_train) d['leaky_relu16'] = tf.nn.leaky_relu(d['batch_norm16'], alpha=0.1) # (13, 13, 512) --> (13, 13, 1024) print('layer16.shape', d['leaky_relu16'].get_shape().as_list()) #conv17 - batch_norm16 - leaky_relu17 with tf.variable_scope('layer17'): d['conv17'] = conv_layer(d['leaky_relu16'], 1, 1, 512, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm17'] = batchNormalization(d['conv17'], is_train) d['leaky_relu17'] = tf.nn.leaky_relu(d['batch_norm17'], alpha=0.1) # (13, 13, 1024) --> (13, 13, 512) print('layer17.shape', d['leaky_relu17'].get_shape().as_list()) #conv18 - batch_norm18 - leaky_relu18 with tf.variable_scope('layer18'): d['conv18'] = depth_point_layer(d['leaky_relu17'], 3, 1, 1024, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm18'] = batchNormalization(d['conv18'], is_train) d['leaky_relu18'] = tf.nn.leaky_relu(d['batch_norm18'], alpha=0.1) # (13, 13, 512) --> (13, 13, 1024) print('layer18.shape', d['leaky_relu18'].get_shape().as_list()) #conv19 - batch_norm19 - leaky_relu19 with tf.variable_scope('layer19'): d['conv19'] = depth_point_layer(d['leaky_relu18'], 3, 1, 1024, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm19'] = batchNormalization(d['conv19'], is_train) d['leaky_relu19'] = tf.nn.leaky_relu(d['batch_norm19'], alpha=0.1) # (13, 13, 1024) --> (13, 13, 1024) print('layer19.shape', d['leaky_relu19'].get_shape().as_list()) #conv20 - batch_norm20 - leaky_relu20 with tf.variable_scope('layer20'): d['conv20'] = depth_point_layer(d['leaky_relu19'], 3, 1, 1024, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm20'] = batchNormalization(d['conv20'], is_train) d['leaky_relu20'] = tf.nn.leaky_relu(d['batch_norm20'], alpha=0.1) # (13, 13, 1024) --> (13, 13, 1024) print('layer20.shape', d['leaky_relu20'].get_shape().as_list()) # concatenate layer20 and layer 13 using space to depth with tf.variable_scope('layer21'): d['skip_connection'] = conv_layer(d['leaky_relu13'], 1, 1, 64, padding='SAME', use_bias=False, weights_stddev=0.01) d['skip_batch'] = batchNormalization(d['skip_connection'], is_train) d['skip_leaky_relu'] = tf.nn.leaky_relu(d['skip_batch'], alpha=0.1) d['skip_space_to_depth_x2'] = tf.space_to_depth( d['skip_leaky_relu'], block_size=2) d['concat21'] = tf.concat( [d['skip_space_to_depth_x2'], d['leaky_relu20']], axis=-1) # (13, 13, 1024) --> (13, 13, 256+1024) print('layer21.shape', d['concat21'].get_shape().as_list()) #conv22 - batch_norm22 - leaky_relu22 with tf.variable_scope('layer22'): d['conv22'] = depth_point_layer(d['concat21'], 3, 1, 1024, padding='SAME', use_bias=False, weights_stddev=0.01) d['batch_norm22'] = batchNormalization(d['conv22'], is_train) d['leaky_relu22'] = tf.nn.leaky_relu(d['batch_norm22'], alpha=0.1) # (13, 13, 1280) --> (13, 13, 1024) print('layer22.shape', d['leaky_relu22'].get_shape().as_list()) output_channel = self.num_anchors * (5 + self.num_classes) d['logit'] = conv_layer(d['leaky_relu22'], 1, 1, output_channel, padding='SAME', use_bias=True, weights_stddev=0.01, biases_value=0.1) d['pred'] = tf.reshape(d['logit'], (-1, self.grid_size[0], self.grid_size[1], self.num_anchors, 5 + self.num_classes)) print('pred.shape', d['pred'].get_shape().as_list()) # (13, 13, 1024) --> (13, 13, num_anchors , (5 + num_classes)) return d