Exemple #1
0
    def _build_model(self, **kwargs):
        d = dict()
        num_classes = self.num_classes
        pretrain = kwargs.pop('pretrain', True)
        frontend = kwargs.pop('frontend', 'resnet_v2_50')
        num_anchors = kwargs.pop('num_anchors', 9)

        if pretrain:
            frontend_dir = os.path.join('pretrained_models',
                                        '{}.ckpt'.format(frontend))
            with slim.arg_scope(resnet_v2.resnet_arg_scope()):
                logits, end_points = resnet_v2.resnet_v2_50(
                    self.X, is_training=self.is_train)
                d['init_fn'] = slim.assign_from_checkpoint_fn(
                    model_path=frontend_dir,
                    var_list=slim.get_model_variables(frontend))
            convs = [
                end_points[frontend + '/block{}'.format(x)] for x in [4, 2, 1]
            ]
        else:
            #TODO build convNet
            raise NotImplementedError("Build own convNet!")

        with tf.variable_scope('layer5'):
            d['s_5'] = conv_layer(convs[0], 256, (1, 1), (1, 1))
            d['cls_head5'] = build_head_cls(d['s_5'], num_anchors,
                                            num_classes + 1)
            d['loc_head5'] = build_head_loc(d['s_5'], num_anchors)
            d['flat_cls_head5'] = tf.reshape(
                d['cls_head5'],
                (tf.shape(d['cls_head5'])[0], -1, num_classes + 1))
            d['flat_loc_head5'] = tf.reshape(
                d['loc_head5'], (tf.shape(d['loc_head5'])[0], -1, 4))

        with tf.variable_scope('layer6'):
            d['s_6'] = conv_layer(d['s_5'], 256, (3, 3), (2, 2))
            d['cls_head6'] = build_head_cls(d['s_6'], num_anchors,
                                            num_classes + 1)
            d['loc_head6'] = build_head_loc(d['s_6'], num_anchors)
            d['flat_cls_head6'] = tf.reshape(
                d['cls_head6'],
                (tf.shape(d['cls_head6'])[0], -1, num_classes + 1))
            d['flat_loc_head6'] = tf.reshape(
                d['loc_head6'], (tf.shape(d['loc_head6'])[0], -1, 4))

        with tf.variable_scope('layer7'):
            d['s_7'] = conv_layer(tf.nn.relu(d['s_6']), 256, (3, 3), (2, 2))
            d['cls_head7'] = build_head_cls(d['s_7'], num_anchors,
                                            num_classes + 1)
            d['loc_head7'] = build_head_loc(d['s_7'], num_anchors)
            d['flat_cls_head7'] = tf.reshape(
                d['cls_head7'],
                (tf.shape(d['cls_head7'])[0], -1, num_classes + 1))
            d['flat_loc_head7'] = tf.reshape(
                d['loc_head7'], (tf.shape(d['loc_head7'])[0], -1, 4))

        with tf.variable_scope('layer4'):
            d['up4'] = resize_to_target(d['s_5'], convs[1])
            d['s_4'] = conv_layer(convs[1], 256, (1, 1), (1, 1)) + d['up4']
            d['cls_head4'] = build_head_cls(d['s_4'], num_anchors,
                                            num_classes + 1)
            d['loc_head4'] = build_head_loc(d['s_4'], num_anchors)
            d['flat_cls_head4'] = tf.reshape(
                d['cls_head4'],
                (tf.shape(d['cls_head4'])[0], -1, num_classes + 1))
            d['flat_loc_head4'] = tf.reshape(
                d['loc_head4'], (tf.shape(d['loc_head4'])[0], -1, 4))

        with tf.variable_scope('layer3'):
            d['up3'] = resize_to_target(d['s_4'], convs[2])
            d['s_3'] = conv_layer(convs[2], 256, (1, 1), (1, 1)) + d['up3']
            d['cls_head3'] = build_head_cls(d['s_3'], num_anchors,
                                            num_classes + 1)
            d['loc_head3'] = build_head_loc(d['s_3'], num_anchors)
            d['flat_cls_head3'] = tf.reshape(
                d['cls_head3'],
                (tf.shape(d['cls_head3'])[0], -1, num_classes + 1))
            d['flat_loc_head3'] = tf.reshape(
                d['loc_head3'], (tf.shape(d['loc_head3'])[0], -1, 4))

        with tf.variable_scope('head'):
            d['cls_head'] = tf.concat(
                (d['flat_cls_head3'], d['flat_cls_head4'], d['flat_cls_head5'],
                 d['flat_cls_head6'], d['flat_cls_head7']),
                axis=1)

            d['loc_head'] = tf.concat(
                (d['flat_loc_head3'], d['flat_loc_head4'], d['flat_loc_head5'],
                 d['flat_loc_head6'], d['flat_loc_head7']),
                axis=1)

            d['logits'] = tf.concat((d['loc_head'], d['cls_head']), axis=2)
            d['pred'] = tf.concat(
                (d['loc_head'], tf.nn.softmax(d['cls_head'], axis=-1)), axis=2)

        return d
Exemple #2
0
    def _build_model(self, **kwargs):
        """
        Build model.
        :param kwargs: dict, extra arguments for building AlexNet.
            - image_mean: np.ndarray, mean image for each input channel, shape: (C,).
            - dropout_prob: float, the probability of dropping out each unit in FC layer.
        :return d: dict, containing outputs on each layer.
        """
        d = dict()    # Dictionary to save intermediate values returned from each layer.
        X_mean = kwargs.pop('image_mean', 0.0)
        dropout_prob = kwargs.pop('dropout_prob', 0.0)
        num_classes = int(self.y.get_shape()[-1])

        # The probability of keeping each unit for dropout layers
        keep_prob = tf.cond(self.is_train,
                            lambda: 1. - dropout_prob,
                            lambda: 1.)

        # input
        X_input = self.X - X_mean    # perform mean subtraction

        # First Convolution Layer
        # conv1 - relu1 - pool1

        with tf.variable_scope('conv1'):
            # conv_layer(x, side_l, stride, out_depth, padding='SAME', **kwargs):
            d['conv1'] = conv_layer(X_input, 3, 1, 64, padding='SAME',
                                    weights_stddev=0.01, biases_value=1.0)
            print('conv1.shape', d['conv1'].get_shape().as_list())
        d['relu1'] = tf.nn.relu(d['conv1'])
        # max_pool(x, side_l, stride, padding='SAME'):
        d['pool1'] = max_pool(d['relu1'], 2, 1, padding='SAME')
        d['drop1'] = tf.nn.dropout(d['pool1'], keep_prob)
        print('pool1.shape', d['pool1'].get_shape().as_list())

        # Second Convolution Layer
        # conv2 - relu2 - pool2
        with tf.variable_scope('conv2'):
            d['conv2'] = conv_layer(d['pool1'], 3, 1, 128, padding='SAME',
                                    weights_stddev=0.01, biases_value=1.0)
            print('conv2.shape', d['conv2'].get_shape().as_list())
        d['relu2'] = tf.nn.relu(d['conv2'])
        d['pool2'] = max_pool(d['relu2'], 2, 1, padding='SAME')
        d['drop2'] = tf.nn.dropout(d['pool2'], keep_prob)
        print('pool2.shape', d['pool2'].get_shape().as_list())

        # Third Convolution Layer
        # conv3 - relu3
        with tf.variable_scope('conv3'):
            d['conv3'] = conv_layer(d['pool2'], 3, 1, 256, padding='SAME',
                                    weights_stddev=0.01, biases_value=1.0)
            print('conv3.shape', d['conv3'].get_shape().as_list())
        d['relu3'] = tf.nn.relu(d['conv3'])
        d['pool3'] = max_pool(d['relu3'], 2, 1, padding='SAME')
        d['drop3'] = tf.nn.dropout(d['pool3'], keep_prob)
        print('pool3.shape', d['pool3'].get_shape().as_list())


        # Flatten feature maps
        f_dim = int(np.prod(d['drop3'].get_shape()[1:]))
        f_emb = tf.reshape(d['drop3'], [-1, f_dim])

        # fc4
        with tf.variable_scope('fc4'):
            d['fc4'] = fc_layer(f_emb, 1024,
                                weights_stddev=0.005, biases_value=0.1)
        d['relu4'] = tf.nn.relu(d['fc4'])
        print('fc4.shape', d['relu4'].get_shape().as_list())

        # fc5
        with tf.variable_scope('fc5'):
            d['fc5'] = fc_layer(d['relu4'], 1024,
                                weights_stddev=0.005, biases_value=0.1)
        d['relu5'] = tf.nn.relu(d['fc5'])
        print('fc5.shape', d['relu5'].get_shape().as_list())
        d['logits'] = fc_layer(d['relu5'], num_classes,
                               weights_stddev=0.01, biases_value=0.0)
        print('logits.shape', d['logits'].get_shape().as_list())

        # softmax
        d['pred'] = tf.nn.softmax(d['logits'])

        return d
    def _build_model(self, **kwargs):
        """
        Build model.
        :param kwargs: dict, extra arguments for building YOLO.
                -image_mean: np.ndarray, mean image for each input channel, shape: (C,).
        :return d: dict, containing outputs on each layer.
        """

        d = dict()
        x_mean = kwargs.pop('image_mean', 0.0)

        # input
        X_input = self.X - x_mean
        is_train = self.is_train

        #conv1 - batch_norm1 - leaky_relu1 - pool1
        with tf.variable_scope('layer1'):
            d['conv1'] = conv_layer(X_input,
                                    3,
                                    1,
                                    32,
                                    padding='SAME',
                                    use_bias=False,
                                    weights_stddev=0.01)
            d['batch_norm1'] = batchNormalization(d['conv1'], is_train)
            d['leaky_relu1'] = tf.nn.leaky_relu(d['batch_norm1'], alpha=0.1)
            d['pool1'] = max_pool(d['leaky_relu1'], 2, 2, padding='SAME')
        # (416, 416, 3) --> (208, 208, 32)
        print('layer1.shape', d['pool1'].get_shape().as_list())

        #conv2 - batch_norm2 - leaky_relu2 - pool2
        with tf.variable_scope('layer2'):
            d['conv2'] = depth_point_layer(d['pool1'],
                                           3,
                                           1,
                                           64,
                                           padding='SAME',
                                           use_bias=False,
                                           weights_stddev=0.01)
            d['batch_norm2'] = batchNormalization(d['conv2'], is_train)
            d['leaky_relu2'] = tf.nn.leaky_relu(d['batch_norm2'], alpha=0.1)
            d['pool2'] = max_pool(d['leaky_relu2'], 2, 2, padding='SAME')
        # (208, 208, 32) --> (104, 104, 64)
        print('layer2.shape', d['pool2'].get_shape().as_list())

        #conv3 - batch_norm3 - leaky_relu3
        with tf.variable_scope('layer3'):
            d['conv3'] = depth_point_layer(d['pool2'],
                                           3,
                                           1,
                                           128,
                                           padding='SAME',
                                           use_bias=False,
                                           weights_stddev=0.01)
            d['batch_norm3'] = batchNormalization(d['conv3'], is_train)
            d['leaky_relu3'] = tf.nn.leaky_relu(d['batch_norm3'], alpha=0.1)
        # (104, 104, 64) --> (104, 104, 128)
        print('layer3.shape', d['leaky_relu3'].get_shape().as_list())

        #conv4 - batch_norm4 - leaky_relu4
        with tf.variable_scope('layer4'):
            d['conv4'] = conv_layer(d['leaky_relu3'],
                                    1,
                                    1,
                                    64,
                                    padding='SAME',
                                    use_bias=False,
                                    weights_stddev=0.01)
            d['batch_norm4'] = batchNormalization(d['conv4'], is_train)
            d['leaky_relu4'] = tf.nn.leaky_relu(d['batch_norm4'], alpha=0.1)
        # (104, 104, 128) --> (104, 104, 64)
        print('layer4.shape', d['leaky_relu4'].get_shape().as_list())

        #conv5 - batch_norm5 - leaky_relu5 - pool5
        with tf.variable_scope('layer5'):
            d['conv5'] = depth_point_layer(d['leaky_relu4'],
                                           3,
                                           1,
                                           128,
                                           padding='SAME',
                                           use_bias=False,
                                           weights_stddev=0.01)
            d['batch_norm5'] = batchNormalization(d['conv5'], is_train)
            d['leaky_relu5'] = tf.nn.leaky_relu(d['batch_norm5'], alpha=0.1)
            d['pool5'] = max_pool(d['leaky_relu5'], 2, 2, padding='SAME')
        # (104, 104, 64) --> (52, 52, 128)
        print('layer5.shape', d['pool5'].get_shape().as_list())

        #conv6 - batch_norm6 - leaky_relu6
        with tf.variable_scope('layer6'):
            d['conv6'] = depth_point_layer(d['pool5'],
                                           3,
                                           1,
                                           256,
                                           padding='SAME',
                                           use_bias=False,
                                           weights_stddev=0.01)
            d['batch_norm6'] = batchNormalization(d['conv6'], is_train)
            d['leaky_relu6'] = tf.nn.leaky_relu(d['batch_norm6'], alpha=0.1)
        # (52, 52, 128) --> (52, 52, 256)
        print('layer6.shape', d['leaky_relu6'].get_shape().as_list())

        #conv7 - batch_norm7 - leaky_relu7
        with tf.variable_scope('layer7'):
            d['conv7'] = conv_layer(d['leaky_relu6'],
                                    1,
                                    1,
                                    128,
                                    padding='SAME',
                                    weights_stddev=0.01,
                                    biases_value=0.0)
            d['batch_norm7'] = batchNormalization(d['conv7'], is_train)
            d['leaky_relu7'] = tf.nn.leaky_relu(d['batch_norm7'], alpha=0.1)
        # (52, 52, 256) --> (52, 52, 128)
        print('layer7.shape', d['leaky_relu7'].get_shape().as_list())

        #conv8 - batch_norm8 - leaky_relu8 - pool8
        with tf.variable_scope('layer8'):
            d['conv8'] = depth_point_layer(d['leaky_relu7'],
                                           3,
                                           1,
                                           256,
                                           padding='SAME',
                                           use_bias=False,
                                           weights_stddev=0.01)
            d['batch_norm8'] = batchNormalization(d['conv8'], is_train)
            d['leaky_relu8'] = tf.nn.leaky_relu(d['batch_norm8'], alpha=0.1)
            d['pool8'] = max_pool(d['leaky_relu8'], 2, 2, padding='SAME')
        # (52, 52, 128) --> (26, 26, 256)
        print('layer8.shape', d['pool8'].get_shape().as_list())

        #conv9 - batch_norm9 - leaky_relu9
        with tf.variable_scope('layer9'):
            d['conv9'] = depth_point_layer(d['pool8'],
                                           3,
                                           1,
                                           512,
                                           padding='SAME',
                                           use_bias=False,
                                           weights_stddev=0.01)
            d['batch_norm9'] = batchNormalization(d['conv9'], is_train)
            d['leaky_relu9'] = tf.nn.leaky_relu(d['batch_norm9'], alpha=0.1)
        # (26, 26, 256) --> (26, 26, 512)
        print('layer9.shape', d['leaky_relu9'].get_shape().as_list())

        #conv10 - batch_norm10 - leaky_relu10
        with tf.variable_scope('layer10'):
            d['conv10'] = conv_layer(d['leaky_relu9'],
                                     1,
                                     1,
                                     256,
                                     padding='SAME',
                                     use_bias=False,
                                     weights_stddev=0.01)
            d['batch_norm10'] = batchNormalization(d['conv10'], is_train)
            d['leaky_relu10'] = tf.nn.leaky_relu(d['batch_norm10'], alpha=0.1)
        # (26, 26, 512) --> (26, 26, 256)
        print('layer10.shape', d['leaky_relu10'].get_shape().as_list())

        #conv11 - batch_norm11 - leaky_relu11
        with tf.variable_scope('layer11'):
            d['conv11'] = depth_point_layer(d['leaky_relu10'],
                                            3,
                                            1,
                                            512,
                                            padding='SAME',
                                            use_bias=False,
                                            weights_stddev=0.01)
            d['batch_norm11'] = batchNormalization(d['conv11'], is_train)
            d['leaky_relu11'] = tf.nn.leaky_relu(d['batch_norm11'], alpha=0.1)
        # (26, 26, 256) --> (26, 26, 512)
        print('layer11.shape', d['leaky_relu11'].get_shape().as_list())

        #conv12 - batch_norm12 - leaky_relu12
        with tf.variable_scope('layer12'):
            d['conv12'] = conv_layer(d['leaky_relu11'],
                                     1,
                                     1,
                                     256,
                                     padding='SAME',
                                     use_bias=False,
                                     weights_stddev=0.01)
            d['batch_norm12'] = batchNormalization(d['conv12'], is_train)
            d['leaky_relu12'] = tf.nn.leaky_relu(d['batch_norm12'], alpha=0.1)
        # (26, 26, 512) --> (26, 26, 256)
        print('layer12.shape', d['leaky_relu12'].get_shape().as_list())

        #conv13 - batch_norm13 - leaky_relu13 - pool13
        with tf.variable_scope('layer13'):
            d['conv13'] = depth_point_layer(d['leaky_relu12'],
                                            3,
                                            1,
                                            512,
                                            padding='SAME',
                                            use_bias=False,
                                            weights_stddev=0.01)
            d['batch_norm13'] = batchNormalization(d['conv13'], is_train)
            d['leaky_relu13'] = tf.nn.leaky_relu(d['batch_norm13'], alpha=0.1)
            d['pool13'] = max_pool(d['leaky_relu13'], 2, 2, padding='SAME')
        # (26, 26, 256) --> (13, 13, 512)
        print('layer13.shape', d['pool13'].get_shape().as_list())

        #conv14 - batch_norm14 - leaky_relu14
        with tf.variable_scope('layer14'):
            d['conv14'] = depth_point_layer(d['pool13'],
                                            3,
                                            1,
                                            1024,
                                            padding='SAME',
                                            use_bias=False,
                                            weights_stddev=0.01)
            d['batch_norm14'] = batchNormalization(d['conv14'], is_train)
            d['leaky_relu14'] = tf.nn.leaky_relu(d['batch_norm14'], alpha=0.1)
        # (13, 13, 512) --> (13, 13, 1024)
        print('layer14.shape', d['leaky_relu14'].get_shape().as_list())

        #conv15 - batch_norm15 - leaky_relu15
        with tf.variable_scope('layer15'):
            d['conv15'] = conv_layer(d['leaky_relu14'],
                                     1,
                                     1,
                                     512,
                                     padding='SAME',
                                     use_bias=False,
                                     weights_stddev=0.01)
            d['batch_norm15'] = batchNormalization(d['conv15'], is_train)
            d['leaky_relu15'] = tf.nn.leaky_relu(d['batch_norm15'], alpha=0.1)
        # (13, 13, 1024) --> (13, 13, 512)
        print('layer15.shape', d['leaky_relu15'].get_shape().as_list())

        #conv16 - batch_norm16 - leaky_relu16
        with tf.variable_scope('layer16'):
            d['conv16'] = depth_point_layer(d['leaky_relu15'],
                                            3,
                                            1,
                                            1024,
                                            padding='SAME',
                                            use_bias=False,
                                            weights_stddev=0.01)
            d['batch_norm16'] = batchNormalization(d['conv16'], is_train)
            d['leaky_relu16'] = tf.nn.leaky_relu(d['batch_norm16'], alpha=0.1)
        # (13, 13, 512) --> (13, 13, 1024)
        print('layer16.shape', d['leaky_relu16'].get_shape().as_list())

        #conv17 - batch_norm16 - leaky_relu17
        with tf.variable_scope('layer17'):
            d['conv17'] = conv_layer(d['leaky_relu16'],
                                     1,
                                     1,
                                     512,
                                     padding='SAME',
                                     use_bias=False,
                                     weights_stddev=0.01)
            d['batch_norm17'] = batchNormalization(d['conv17'], is_train)
            d['leaky_relu17'] = tf.nn.leaky_relu(d['batch_norm17'], alpha=0.1)
        # (13, 13, 1024) --> (13, 13, 512)
        print('layer17.shape', d['leaky_relu17'].get_shape().as_list())

        #conv18 - batch_norm18 - leaky_relu18
        with tf.variable_scope('layer18'):
            d['conv18'] = depth_point_layer(d['leaky_relu17'],
                                            3,
                                            1,
                                            1024,
                                            padding='SAME',
                                            use_bias=False,
                                            weights_stddev=0.01)
            d['batch_norm18'] = batchNormalization(d['conv18'], is_train)
            d['leaky_relu18'] = tf.nn.leaky_relu(d['batch_norm18'], alpha=0.1)
        # (13, 13, 512) --> (13, 13, 1024)
        print('layer18.shape', d['leaky_relu18'].get_shape().as_list())

        #conv19 - batch_norm19 - leaky_relu19
        with tf.variable_scope('layer19'):
            d['conv19'] = depth_point_layer(d['leaky_relu18'],
                                            3,
                                            1,
                                            1024,
                                            padding='SAME',
                                            use_bias=False,
                                            weights_stddev=0.01)
            d['batch_norm19'] = batchNormalization(d['conv19'], is_train)
            d['leaky_relu19'] = tf.nn.leaky_relu(d['batch_norm19'], alpha=0.1)
        # (13, 13, 1024) --> (13, 13, 1024)
        print('layer19.shape', d['leaky_relu19'].get_shape().as_list())

        #conv20 - batch_norm20 - leaky_relu20
        with tf.variable_scope('layer20'):
            d['conv20'] = depth_point_layer(d['leaky_relu19'],
                                            3,
                                            1,
                                            1024,
                                            padding='SAME',
                                            use_bias=False,
                                            weights_stddev=0.01)
            d['batch_norm20'] = batchNormalization(d['conv20'], is_train)
            d['leaky_relu20'] = tf.nn.leaky_relu(d['batch_norm20'], alpha=0.1)
        # (13, 13, 1024) --> (13, 13, 1024)
        print('layer20.shape', d['leaky_relu20'].get_shape().as_list())

        # concatenate layer20 and layer 13 using space to depth
        with tf.variable_scope('layer21'):
            d['skip_connection'] = conv_layer(d['leaky_relu13'],
                                              1,
                                              1,
                                              64,
                                              padding='SAME',
                                              use_bias=False,
                                              weights_stddev=0.01)
            d['skip_batch'] = batchNormalization(d['skip_connection'],
                                                 is_train)
            d['skip_leaky_relu'] = tf.nn.leaky_relu(d['skip_batch'], alpha=0.1)
            d['skip_space_to_depth_x2'] = tf.space_to_depth(
                d['skip_leaky_relu'], block_size=2)
            d['concat21'] = tf.concat(
                [d['skip_space_to_depth_x2'], d['leaky_relu20']], axis=-1)
        # (13, 13, 1024) --> (13, 13, 256+1024)
        print('layer21.shape', d['concat21'].get_shape().as_list())

        #conv22 - batch_norm22 - leaky_relu22
        with tf.variable_scope('layer22'):
            d['conv22'] = depth_point_layer(d['concat21'],
                                            3,
                                            1,
                                            1024,
                                            padding='SAME',
                                            use_bias=False,
                                            weights_stddev=0.01)
            d['batch_norm22'] = batchNormalization(d['conv22'], is_train)
            d['leaky_relu22'] = tf.nn.leaky_relu(d['batch_norm22'], alpha=0.1)
        # (13, 13, 1280) --> (13, 13, 1024)
        print('layer22.shape', d['leaky_relu22'].get_shape().as_list())

        output_channel = self.num_anchors * (5 + self.num_classes)
        d['logit'] = conv_layer(d['leaky_relu22'],
                                1,
                                1,
                                output_channel,
                                padding='SAME',
                                use_bias=True,
                                weights_stddev=0.01,
                                biases_value=0.1)
        d['pred'] = tf.reshape(d['logit'],
                               (-1, self.grid_size[0], self.grid_size[1],
                                self.num_anchors, 5 + self.num_classes))
        print('pred.shape', d['pred'].get_shape().as_list())
        # (13, 13, 1024) --> (13, 13, num_anchors , (5 + num_classes))

        return d
Exemple #4
0
    def _build_model(self, **kwargs):
        """
        Build model.
        :param kwargs: dict, extra arguments for building YOLO.
                -image_mean: np.ndarray, mean image for each input channel, shape: (C,).
        :return d: dict, containing outputs on each layer.
        """

        d = dict()
        x_mean = kwargs.pop('image_mean', 0.0)
        pretrain = kwargs.pop('pretrain', False)
        frontend = kwargs.pop('frontend', 'resnet_v2_50')

        # input
        X_input = self.X - x_mean
        is_train = self.is_train

        # Feature Extractor
        if pretrain:
            frontend_dir = os.path.join('pretrained_models',
                                        '{}.ckpt'.format(frontend))
            with slim.arg_scope(resnet_v2.resnet_arg_scope()):
                logits, end_points = resnet_v2.resnet_v2_50(
                    self.X, is_training=self.is_train)
                d['init_fn'] = slim.assign_from_checkpoint_fn(
                    model_path=frontend_dir,
                    var_list=slim.get_model_variables(frontend))
            convs = [
                end_points[frontend + '/block{}'.format(x)] for x in [4, 2, 1]
            ]
            d['conv_s32'] = convs[0]
            d['conv_s16'] = convs[1]
        else:
            # Build ConvNet
            #conv1 - batch_norm1 - leaky_relu1 - pool1
            with tf.variable_scope('layer1'):
                d['conv1'] = conv_bn_relu(X_input, 32, (3, 3), is_train)
                d['pool1'] = max_pool(d['conv1'], 2, 2, padding='SAME')
            # (416, 416, 3) --> (208, 208, 32)

            #conv2 - batch_norm2 - leaky_relu2 - pool2
            with tf.variable_scope('layer2'):
                d['conv2'] = conv_bn_relu(d['pool1'], 64, (3, 3), is_train)
                d['pool2'] = max_pool(d['conv2'], 2, 2, padding='SAME')
            # (208, 208, 32) --> (104, 104, 64)

            #conv3 - batch_norm3 - leaky_relu3
            with tf.variable_scope('layer3'):
                d['conv3'] = conv_bn_relu(d['pool2'], 128, (3, 3), is_train)
            # (104, 104, 64) --> (104, 104, 128)

            #conv4 - batch_norm4 - leaky_relu4
            with tf.variable_scope('layer4'):
                d['conv4'] = conv_bn_relu(d['conv3'], 64, (1, 1), is_train)
            # (104, 104, 128) --> (104, 104, 64)

            #conv5 - batch_norm5 - leaky_relu5 - pool5
            with tf.variable_scope('layer5'):
                d['conv5'] = conv_bn_relu(d['conv4'], 128, (3, 3), is_train)
                d['pool5'] = max_pool(d['conv5'], 2, 2, padding='SAME')
            # (104, 104, 64) --> (52, 52, 128)

            #conv6 - batch_norm6 - leaky_relu6
            with tf.variable_scope('layer6'):
                d['conv6'] = conv_bn_relu(d['pool5'], 256, (3, 3), is_train)
            # (52, 52, 128) --> (52, 52, 256)

            #conv7 - batch_norm7 - leaky_relu7
            with tf.variable_scope('layer7'):
                d['conv7'] = conv_bn_relu(d['conv6'], 128, (1, 1), is_train)
            # (52, 52, 256) --> (52, 52, 128)

            #conv8 - batch_norm8 - leaky_relu8 - pool8
            with tf.variable_scope('layer8'):
                d['conv8'] = conv_bn_relu(d['conv7'], 256, (3, 3), is_train)
                d['pool8'] = max_pool(d['conv8'], 2, 2, padding='SAME')
            # (52, 52, 128) --> (26, 26, 256)

            #conv9 - batch_norm9 - leaky_relu9
            with tf.variable_scope('layer9'):
                d['conv9'] = conv_bn_relu(d['pool8'], 512, (3, 3), is_train)
            # (26, 26, 256) --> (26, 26, 512)

            #conv10 - batch_norm10 - leaky_relu10
            with tf.variable_scope('layer10'):
                d['conv10'] = conv_bn_relu(d['conv9'], 256, (1, 1), is_train)
            # (26, 26, 512) --> (26, 26, 256)

            #conv11 - batch_norm11 - leaky_relu11
            with tf.variable_scope('layer11'):
                d['conv11'] = conv_bn_relu(d['conv10'], 512, (3, 3), is_train)
            # (26, 26, 256) --> (26, 26, 512)

            #conv12 - batch_norm12 - leaky_relu12
            with tf.variable_scope('layer12'):
                d['conv12'] = conv_bn_relu(d['conv11'], 256, (1, 1), is_train)
            # (26, 26, 512) --> (26, 26, 256)

            #conv13 - batch_norm13 - leaky_relu13 - pool13
            with tf.variable_scope('layer13'):
                d['conv13'] = conv_bn_relu(d['conv12'], 512, (3, 3), is_train)
                d['pool13'] = max_pool(d['conv13'], 2, 2, padding='SAME')
            # (26, 26, 256) --> (13, 13, 512)

            #conv14 - batch_norm14 - leaky_relu14
            with tf.variable_scope('layer14'):
                d['conv14'] = conv_bn_relu(d['pool13'], 1024, (3, 3), is_train)
            # (13, 13, 512) --> (13, 13, 1024)

            #conv15 - batch_norm15 - leaky_relu15
            with tf.variable_scope('layer15'):
                d['conv15'] = conv_bn_relu(d['conv14'], 512, (1, 1), is_train)
            # (13, 13, 1024) --> (13, 13, 512)

            #conv16 - batch_norm16 - leaky_relu16
            with tf.variable_scope('layer16'):
                d['conv16'] = conv_bn_relu(d['conv15'], 1024, (3, 3), is_train)
            # (13, 13, 512) --> (13, 13, 1024)

            #conv17 - batch_norm16 - leaky_relu17
            with tf.variable_scope('layer17'):
                d['conv17'] = conv_bn_relu(d['conv16'], 512, (1, 1), is_train)
            # (13, 13, 1024) --> (13, 13, 512)

            #conv18 - batch_norm18 - leaky_relu18
            with tf.variable_scope('layer18'):
                d['conv18'] = conv_bn_relu(d['conv17'], 1024, (3, 3), is_train)
            # (13, 13, 512) --> (13, 13, 1024)

            #conv19 - batch_norm19 - leaky_relu19
            with tf.variable_scope('layer19'):
                d['conv19'] = conv_bn_relu(d['conv18'], 1024, (3, 3), is_train)
            # (13, 13, 1024) --> (13, 13, 1024)
            d['conv_s32'] = d['conv19']
            d['conv_s16'] = d['conv13']

        #Detection Layer
        #conv20 - batch_norm20 - leaky_relu20
        with tf.variable_scope('layer20'):
            d['conv20'] = conv_bn_relu(d['conv_s32'], 1024, (3, 3), is_train)
        # (13, 13, 1024) --> (13, 13, 1024)

        # concatenate layer20 and layer 13 using space to depth
        with tf.variable_scope('layer21'):
            d['skip_connection'] = conv_bn_relu(d['conv_s16'], 64, (1, 1),
                                                is_train)
            d['skip_space_to_depth_x2'] = tf.space_to_depth(
                d['skip_connection'], block_size=2)
            d['concat21'] = tf.concat(
                [d['skip_space_to_depth_x2'], d['conv20']], axis=-1)
        # (13, 13, 1024) --> (13, 13, 256+1024)

        #conv22 - batch_norm22 - leaky_relu22
        with tf.variable_scope('layer22'):
            d['conv22'] = conv_bn_relu(d['concat21'], 1024, (3, 3), is_train)
        # (13, 13, 1280) --> (13, 13, 1024)

        output_channel = self.num_anchors * (5 + self.num_classes)
        d['logits'] = conv_layer(d['conv22'],
                                 output_channel, (1, 1), (1, 1),
                                 padding='SAME',
                                 use_bias=True)
        d['pred'] = tf.reshape(d['logits'],
                               (-1, self.grid_size[0], self.grid_size[1],
                                self.num_anchors, 5 + self.num_classes))
        # (13, 13, 1024) --> (13, 13, num_anchors , (5 + num_classes))
        return d
Exemple #5
0
    def _build_model(self, **kwargs):
        d = dict()
        num_classes = self.num_classes
        pretrain = kwargs.pop('pretrain', True)
        frontend = kwargs.pop('frontend', 'resnet_v2_50')

        if pretrain:
            frontend_dir = os.path.join('pretrained_models',
                                        '{}.ckpt'.format(frontend))
            print(frontend_dir)
            with slim.arg_scope(resnet_v2.resnet_arg_scope()):
                logits, end_points = resnet_v2.resnet_v2_50(
                    self.X, is_training=self.is_train)
                d['init_fn'] = slim.assign_from_checkpoint_fn(
                    model_path=frontend_dir,
                    var_list=slim.get_model_variables(frontend))
                resnet_dict = [
                    '/block1/unit_2/bottleneck_v2',  # conv1
                    '/block2/unit_3/bottleneck_v2',  # conv2
                    '/block3/unit_5/bottleneck_v2',  # conv3
                    '/block4/unit_3/bottleneck_v2'  # conv4
                ]
                convs = [end_points[frontend + x] for x in resnet_dict]
        else:
            # TODO build convNet
            raise NotImplementedError("Build own convNet!")
        if self.X.shape[1].value is None:
            # input size should be bigger than (512, 512)
            g_kernel_size = (15, 15)
        else:
            g_kernel_size = (self.X.shape[1].value // 32 - 1,
                             self.X.shape[2].value // 32 - 1)

        with tf.variable_scope('layer5'):
            d['gcm1'] = global_conv_module(convs[3], num_classes,
                                           g_kernel_size)
            d['brm1_1'] = boundary_refine_module(d['gcm1'], num_classes)
            d['up16'] = up_scale(d['brm1_1'], 2)

        with tf.variable_scope('layer4'):
            d['gcm2'] = global_conv_module(convs[2], num_classes,
                                           g_kernel_size)
            d['brm2_1'] = boundary_refine_module(d['gcm2'], num_classes)
            d['sum16'] = d['up16'] + d['brm2_1']
            d['brm2_2'] = boundary_refine_module(d['sum16'], num_classes)
            d['up8'] = up_scale(d['brm2_2'], 2)

        with tf.variable_scope('layer3'):
            d['gcm3'] = global_conv_module(convs[1], num_classes,
                                           g_kernel_size)
            d['brm3_1'] = boundary_refine_module(d['gcm3'], num_classes)
            d['sum8'] = d['up8'] + d['brm3_1']
            d['brm3_2'] = boundary_refine_module(d['sum8'], num_classes)
            d['up4'] = up_scale(d['brm3_2'], 2)

        with tf.variable_scope('layer2'):
            d['gcm4'] = global_conv_module(convs[0], num_classes,
                                           g_kernel_size)
            d['brm4_1'] = boundary_refine_module(d['gcm4'], num_classes)
            d['sum4'] = d['up4'] + d['brm4_1']
            d['brm4_2'] = boundary_refine_module(d['sum4'], num_classes)
            d['up2'] = up_scale(d['brm4_2'], 2)

        with tf.variable_scope('layer1'):
            d['brm4_3'] = boundary_refine_module(d['up2'], num_classes)
            d['up1'] = up_scale(d['brm4_3'], 2)
            d['brm4_4'] = boundary_refine_module(d['up1'], num_classes)

        with tf.variable_scope('output_layer'):
            d['logits'] = conv_layer(d['brm4_4'], num_classes, (1, 1), (1, 1))
            d['pred'] = tf.nn.softmax(d['logits'], axis=-1)

        return d
    def _build_model(self, **kwargs):
        """
        Build model.
        :param kwargs: dict, extra arguments for building AlexNet.
            - image_mean: np.ndarray, mean image for each input channel, shape: (C,).
            - dropout_prob: float, the probability of dropping out each unit in FC layer.
        :return d: dict, containing outputs on each layer.
        """
        d = dict(
        )  # Dictionary to save intermediate values returned from each layer.
        X_mean = kwargs.pop('image_mean', 0.0)
        dropout_prob = kwargs.pop('dropout_prob', 0.0)
        num_classes = int(self.y.get_shape()[-1])

        # The probability of keeping each unit for dropout layers
        keep_prob = tf.cond(self.is_train, lambda: 1. - dropout_prob,
                            lambda: 1.)

        # input
        X_input = self.X - X_mean  # perform mean subtraction

        # conv1 - relu1 - pool1
        with tf.variable_scope('conv1'):
            d['conv1'] = conv_layer(X_input,
                                    11,
                                    4,
                                    96,
                                    padding='VALID',
                                    weights_stddev=0.01,
                                    biases_value=0.0)
            print('conv1.shape', d['conv1'].get_shape().as_list())
        d['relu1'] = tf.nn.relu(d['conv1'])
        # (227, 227, 3) --> (55, 55, 96)
        d['pool1'] = max_pool(d['relu1'], 3, 2, padding='VALID')
        # (55, 55, 96) --> (27, 27, 96)
        print('pool1.shape', d['pool1'].get_shape().as_list())

        # conv2 - relu2 - pool2
        with tf.variable_scope('conv2'):
            d['conv2'] = conv_layer(d['pool1'],
                                    5,
                                    1,
                                    256,
                                    padding='SAME',
                                    weights_stddev=0.01,
                                    biases_value=0.1)
            print('conv2.shape', d['conv2'].get_shape().as_list())
        d['relu2'] = tf.nn.relu(d['conv2'])
        # (27, 27, 96) --> (27, 27, 256)
        d['pool2'] = max_pool(d['relu2'], 3, 2, padding='VALID')
        # (27, 27, 256) --> (13, 13, 256)
        print('pool2.shape', d['pool2'].get_shape().as_list())

        # conv3 - relu3
        with tf.variable_scope('conv3'):
            d['conv3'] = conv_layer(d['pool2'],
                                    3,
                                    1,
                                    384,
                                    padding='SAME',
                                    weights_stddev=0.01,
                                    biases_value=0.0)
            print('conv3.shape', d['conv3'].get_shape().as_list())
        d['relu3'] = tf.nn.relu(d['conv3'])
        # (13, 13, 256) --> (13, 13, 384)

        # conv4 - relu4
        with tf.variable_scope('conv4'):
            d['conv4'] = conv_layer(d['relu3'],
                                    3,
                                    1,
                                    384,
                                    padding='SAME',
                                    weights_stddev=0.01,
                                    biases_value=0.1)
            print('conv4.shape', d['conv4'].get_shape().as_list())
        d['relu4'] = tf.nn.relu(d['conv4'])
        # (13, 13, 384) --> (13, 13, 384)

        # conv5 - relu5 - pool5
        with tf.variable_scope('conv5'):
            d['conv5'] = conv_layer(d['relu4'],
                                    3,
                                    1,
                                    256,
                                    padding='SAME',
                                    weights_stddev=0.01,
                                    biases_value=0.1)
            print('conv5.shape', d['conv5'].get_shape().as_list())
        d['relu5'] = tf.nn.relu(d['conv5'])
        # (13, 13, 384) --> (13, 13, 256)
        d['pool5'] = max_pool(d['relu5'], 3, 2, padding='VALID')
        # (13, 13, 256) --> (6, 6, 256)
        print('pool5.shape', d['pool5'].get_shape().as_list())

        # Flatten feature maps
        f_dim = int(np.prod(d['pool5'].get_shape()[1:]))
        f_emb = tf.reshape(d['pool5'], [-1, f_dim])
        # (6, 6, 256) --> (9216)

        # fc6
        with tf.variable_scope('fc6'):
            d['fc6'] = fc_layer(f_emb,
                                4096,
                                weights_stddev=0.005,
                                biases_value=0.1)
        d['relu6'] = tf.nn.relu(d['fc6'])
        d['drop6'] = tf.nn.dropout(d['relu6'], keep_prob)
        # (9216) --> (4096)
        print('drop6.shape', d['drop6'].get_shape().as_list())

        # fc7
        with tf.variable_scope('fc7'):
            d['fc7'] = fc_layer(d['drop6'],
                                4096,
                                weights_stddev=0.005,
                                biases_value=0.1)
        d['relu7'] = tf.nn.relu(d['fc7'])
        d['drop7'] = tf.nn.dropout(d['relu7'], keep_prob)
        # (4096) --> (4096)
        print('drop7.shape', d['drop7'].get_shape().as_list())

        # fc8
        with tf.variable_scope('fc8'):
            d['logits'] = fc_layer(d['relu7'],
                                   num_classes,
                                   weights_stddev=0.01,
                                   biases_value=0.0)
        # (4096) --> (num_classes)

        # softmax
        d['pred'] = tf.nn.softmax(d['logits'])

        return d
Exemple #7
0
def cnn_model_trainer():
    # ALEXNET
    dataset = DeepSatData()

    x = tf.placeholder(tf.float32, shape=[None, 28, 28, 4], name='x')
    y_ = tf.placeholder(tf.float32, shape=[None, 4], name='y_')
    keep_prob = tf.placeholder(tf.float32, name='keep_prob')

    conv1 = conv_layer(x, shape=[3, 3, 4, 16], pad='VALID')
    conv1_pool = max_pool_2x2(conv1, 2, 2)

    conv2 = conv_layer(conv1_pool, shape=[3, 3, 16, 48], pad='SAME')
    conv2_pool = max_pool_2x2(conv2, 3, 3)

    conv3 = conv_layer(conv2_pool, shape=[3, 3, 48, 96], pad='SAME')
    # conv3_pool = max_pool_2x2(conv3)

    conv4 = conv_layer(conv3, shape=[3, 3, 96, 64], pad='SAME')
    # conv4_pool = max_pool_2x2(conv4)

    conv5 = conv_layer(conv4, shape=[3, 3, 64, 64], pad='SAME')
    conv5_pool = max_pool_2x2(conv5, 2, 2)

    _flat = tf.reshape(conv5_pool, [-1, 3 * 3 * 64])
    _drop1 = tf.nn.dropout(_flat, keep_prob=keep_prob)

    # full_1 = tf.nn.relu(full_layer(_drop1, 200))
    full_1 = tf.nn.relu(full_layer(_drop1, 200))
    # -- until here
    # classifier:add(nn.Threshold(0, 1e-6))
    _drop2 = tf.nn.dropout(full_1, keep_prob=keep_prob)
    full_2 = tf.nn.relu(full_layer(_drop2, 200))
    # classifier:add(nn.Threshold(0, 1e-6))
    full_3 = full_layer(full_2, 4)

    pred = tf.nn.softmax(logits=full_3, name='pred')  # for later prediction

    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=full_3, labels=y_))

    # train_step = tf.train.RMSPropOptimizer(lr, decay, momentum).minimize(cross_entropy)
    train_step = tf.train.AdamOptimizer(lr).minimize(cross_entropy)

    correct_prediction = tf.equal(tf.argmax(full_3, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy')

    tf.summary.scalar('loss', cross_entropy)
    tf.summary.scalar('accuracy', accuracy)

    # Setting up for the visualization of the data in Tensorboard
    embedding_size = 200    # size of second to last fc layer
    embedding_input = full_2    #FC2 as input
    # Variable containing the points in visualization
    embedding = tf.Variable(tf.zeros([10000, embedding_size]), name="test_embedding")
    assignment = embedding.assign(embedding_input)  # Will be passed in the test session

    merged_sum = tf.summary.merge_all()

    def test(test_sess, assign):
        x_ = dataset.test.images.reshape(10, 10000, 28, 28, 4)
        y = dataset.test.labels.reshape(10, 10000, 4)

        test_acc = np.mean([test_sess.run(accuracy, feed_dict={x: x_[im], y_: y[im], keep_prob: 1.0})
                            for im in range(10)])

        # Pass through the last 10,000 of the test set for visualization
        test_sess.run([assign], feed_dict={x: x_[9], y_: y[9], keep_prob: 1.0})
        return test_acc

    # config=config
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        # tensorboard
        sum_writer = tf.summary.FileWriter(os.path.join(log_dir, log_name))
        sum_writer.add_graph(sess.graph)

        # Create a Saver object
        #max_to_keep: keep how many models to keep. Delete old ones.
        saver = tf.train.Saver(max_to_keep=MODELS_TO_KEEP)


        # setting up Projector
        config = tf.contrib.tensorboard.plugins.projector.ProjectorConfig()
        embedding_config = config.embeddings.add()
        embedding_config.tensor_name = embedding.name
        embedding_config.metadata_path = LABELS     #labels

        # Specify the width and height of a single thumbnail.
        embedding_config.sprite.image_path = SPRITES
        embedding_config.sprite.single_image_dim.extend([28, 28])
        tf.contrib.tensorboard.plugins.projector.visualize_embeddings(sum_writer, config)

        for i in range(STEPS):
            batch = dataset.train.next_batch(BATCH_SIZE)
            batch_x = batch[0]
            batch_y = batch[1]

            sess.run(train_step, feed_dict={x: batch_x, y_: batch_y, keep_prob: dropoutProb})

            _, summ = sess.run([train_step, merged_sum], feed_dict={x: batch_x, y_: batch_y, keep_prob: dropoutProb})
            sum_writer.add_summary(summ, i)

            if i % ONE_EPOCH == 0:
                ep_print = "\n*****************EPOCH: %d" % ((i/ONE_EPOCH) + 1)
                write_to_file.write(ep_print)
                print(ep_print)
            if i % TEST_INTERVAL == 0:
                acc = test(sess, assignment)
                loss = sess.run(cross_entropy, feed_dict={x: batch_x, y_: batch_y, keep_prob: dropoutProb})
                ep_test_print = "\nEPOCH:%d" % ((i/ONE_EPOCH) + 1) + " Step:" + str(i) + \
                                "|| Minibatch Loss= " + "{:.4f}".format(loss) + \
                                " Accuracy: {:.4}%".format(acc * 100)
                write_to_file.write(ep_test_print)
                print(ep_test_print)
                # Create a checkpoint in every iteration
                # saver.save(sess, os.path.join(model_dir, model_name),
                #            global_step=i)
                saver.save(sess, os.path.join(model_dir, 'model.ckpt'), global_step=i)

        test(sess, assignment)
        sum_writer.close()
Exemple #8
0
def run_simple_net():
    # mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
    dataset = DeepSatData()

    x = tf.placeholder(tf.float32, shape=[None, 28, 28, 4])
    y_ = tf.placeholder(tf.float32, shape=[None, 4])
    keep_prob = tf.placeholder(tf.float32)

    conv1 = conv_layer(x, shape=[3, 3, 4, 16], pad='VALID')
    conv1_pool = max_pool_2x2(conv1, 2, 2)

    conv2 = conv_layer(conv1_pool, shape=[3, 3, 16, 48], pad='SAME')
    conv2_pool = max_pool_2x2(conv2, 3, 3)

    conv3 = conv_layer(conv2_pool, shape=[3, 3, 48, 96], pad='SAME')
    # conv3_pool = max_pool_2x2(conv3)

    conv4 = conv_layer(conv3, shape=[3, 3, 96, 64], pad='SAME')
    # conv4_pool = max_pool_2x2(conv4)

    conv5 = conv_layer(conv4, shape=[3, 3, 64, 64], pad='SAME')
    conv5_pool = max_pool_2x2(conv5, 2, 2)

    _flat = tf.reshape(conv5_pool, [-1, 3 * 3 * 64])
    _drop1 = tf.nn.dropout(_flat, keep_prob=keep_prob)

    # full_1 = tf.nn.relu(full_layer(_drop1, 200))
    full_1 = tf.nn.relu(full_layer(_drop1, 200))
    # -- until here
    # classifier:add(nn.Threshold(0, 1e-6))
    _drop2 = tf.nn.dropout(full_1, keep_prob=keep_prob)
    full_2 = tf.nn.relu(full_layer(_drop2, 200))
    # classifier:add(nn.Threshold(0, 1e-6))
    full_3 = full_layer(full_2, 4)

    predict = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(logits=full_3, labels=y_))

    train_step = tf.train.RMSPropOptimizer(lr, decay,
                                           momentum).minimize(predict)

    correct_prediction = tf.equal(tf.argmax(full_3, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    # full1_drop = tf.nn.dropout(full_1, keep_prob=keep_prob)
    # y_conv = full_layer(full1_drop, 10)
    #
    # cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv,
    #                                                                        labels=y_))
    #
    # train_step = tf.train.AdamOptimizer(lr).minimize(cross_entropy)
    #
    # correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    # accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    #
    tf.summary.scalar('loss', predict)
    tf.summary.scalar('accuracy', accuracy)
    merged_sum = tf.summary.merge_all()

    def test(sess):
        X = dataset.test.images.reshape(10, 10000, 28, 28, 4)
        Y = dataset.test.labels.reshape(10, 10000, 4)
        acc = np.mean([
            sess.run(accuracy, feed_dict={
                x: X[i],
                y_: Y[i],
                keep_prob: 1.0
            }) for i in range(10)
        ])
        print("Accuracy: {:.4}%".format(acc * 100))

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        sum_writer = tf.summary.FileWriter('logs/' + 'default')
        sum_writer.add_graph(sess.graph)

        for i in range(STEPS):
            batch = dataset.train.next_batch(BATCH_SIZE)
            batch_x = batch[0]
            batch_y = batch[1]

            _, summ = sess.run([train_step, merged_sum],
                               feed_dict={
                                   x: batch_x,
                                   y_: batch_y,
                                   keep_prob: 0.5
                               })
            sum_writer.add_summary(summ, i)

            sess.run(train_step,
                     feed_dict={
                         x: batch_x,
                         y_: batch_y,
                         keep_prob: 0.5
                     })

            if i % 500 == 0:
                test(sess)

        test(sess)
        sum_writer.close()