Exemple #1
0
    def middle_flow(self, data):
        block_num = self.bottleneck_params["middle_flow"][0]
        strides = self.bottleneck_params["middle_flow"][1]
        chns = self.bottleneck_params["middle_flow"][2]
        strides = check_data(strides, block_num)
        chns = check_data(chns, block_num)

        # params to control your flow
        s = self.stride
        block_point = self.block_point
        output_stride = self.output_stride
        with scope("middle_flow"):
            for i in range(block_num):
                block_point = block_point + 1
                with scope("block" + str(i + 1)):
                    stride = strides[i] if check_stride(
                        s * strides[i], output_stride) else 1
                    data, short_cuts = self.xception_block(data,
                                                           chns[i],
                                                           [1, 1, strides[i]],
                                                           skip_conv=False)
                    s = s * stride
                    if check_points(block_point, self.decode_points):
                        self.short_cuts[block_point] = short_cuts[1]

        self.stride = s
        self.block_point = block_point
        return data
Exemple #2
0
def _decoder_with_concat(encode_data, decode_shortcut, param_attr):
    with scope('concat'):
        decode_shortcut = bn_relu(
            conv(
                decode_shortcut,
                48,
                1,
                1,
                groups=1,
                padding=0,
                param_attr=param_attr))

        encode_data = fluid.layers.resize_bilinear(encode_data,
                                                   decode_shortcut.shape[2:])
        encode_data = fluid.layers.concat([encode_data, decode_shortcut],
                                          axis=1)
    if cfg.MODEL.DEEPLAB.DECODER_USE_SEP_CONV:
        with scope("separable_conv1"):
            encode_data = separate_conv(
                encode_data,
                cfg.MODEL.DEEPLAB.DECODER.CONV_FILTERS,
                1,
                3,
                dilation=1,
                act=relu)
        with scope("separable_conv2"):
            encode_data = separate_conv(
                encode_data,
                cfg.MODEL.DEEPLAB.DECODER.CONV_FILTERS,
                1,
                3,
                dilation=1,
                act=relu)
    else:
        with scope("decoder_conv1"):
            encode_data = bn_relu(
                conv(
                    encode_data,
                    cfg.MODEL.DEEPLAB.DECODER.CONV_FILTERS,
                    stride=1,
                    filter_size=3,
                    dilation=1,
                    padding=1,
                    param_attr=param_attr))
        with scope("decoder_conv2"):
            encode_data = bn_relu(
                conv(
                    encode_data,
                    cfg.MODEL.DEEPLAB.DECODER.CONV_FILTERS,
                    stride=1,
                    filter_size=3,
                    dilation=1,
                    padding=1,
                    param_attr=param_attr))
    return encode_data
Exemple #3
0
 def xception_block(self,
                    input,
                    channels,
                    strides=1,
                    filters=3,
                    dilation=1,
                    skip_conv=True,
                    has_skip=True,
                    activation_fn_in_separable_conv=False):
     repeat_number = 3
     channels = check_data(channels, repeat_number)
     filters = check_data(filters, repeat_number)
     strides = check_data(strides, repeat_number)
     data = input
     results = []
     for i in range(repeat_number):
         with scope('separable_conv' + str(i + 1)):
             if not activation_fn_in_separable_conv:
                 data = relu(data)
                 data = separate_conv(
                     data,
                     channels[i],
                     strides[i],
                     filters[i],
                     dilation=dilation)
             else:
                 data = separate_conv(
                     data,
                     channels[i],
                     strides[i],
                     filters[i],
                     dilation=dilation,
                     act=relu)
             results.append(data)
     if not has_skip:
         return data, results
     if skip_conv:
         param_attr = fluid.ParamAttr(
             name=name_scope + 'weights',
             regularizer=None,
             initializer=fluid.initializer.TruncatedNormal(
                 loc=0.0, scale=0.09))
         with scope('shortcut'):
             skip = bn(
                 conv(
                     input,
                     channels[-1],
                     1,
                     strides[-1],
                     groups=1,
                     padding=0,
                     param_attr=param_attr))
     else:
         skip = input
     return data + skip, results
Exemple #4
0
    def entry_flow(self, data):
        param_attr = fluid.ParamAttr(
            name=name_scope + 'weights',
            regularizer=None,
            initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.09))
        with scope("entry_flow"):
            with scope("conv1"):
                data = bn_relu(
                    conv(data,
                         32,
                         3,
                         stride=2,
                         padding=1,
                         param_attr=param_attr))
            with scope("conv2"):
                data = bn_relu(
                    conv(data,
                         64,
                         3,
                         stride=1,
                         padding=1,
                         param_attr=param_attr))

        # get entry flow params
        block_num = self.bottleneck_params["entry_flow"][0]
        strides = self.bottleneck_params["entry_flow"][1]
        chns = self.bottleneck_params["entry_flow"][2]
        strides = check_data(strides, block_num)
        chns = check_data(chns, block_num)
        #print("entry:", block_num, strides, chns)

        # params to control your flow
        s = self.stride
        block_point = self.block_point
        output_stride = self.output_stride
        #print("entry:", s, block_point, output_stride)
        with scope("entry_flow"):
            for i in range(block_num):
                block_point = block_point + 1
                with scope("block" + str(i + 1)):
                    stride = strides[i] if check_stride(
                        s * strides[i], output_stride) else 1
                    data, short_cuts = self.xception_block(
                        data, chns[i], [1, 1, stride])
                    s = s * stride
                    if check_points(block_point, self.decode_points):
                        #print("decode shortcut:", block_point)
                        self.short_cuts[block_point] = short_cuts[1]
                    #print("entry:", i, data.shape)

        self.stride = s
        self.block_point = block_point
        #print("entry:", s, block_point, output_stride)
        return data
Exemple #5
0
def decode(data, short_cuts):
    # 解码器设置,与编码器对称
    with scope("decode"):
        with scope("decode1"):
            data = up(data, short_cuts[3], 256)
        with scope("decode2"):
            data = up(data, short_cuts[2], 128)
        with scope("decode3"):
            data = up(data, short_cuts[1], 64)
        with scope("decode4"):
            data = up(data, short_cuts[0], 64)
    return data
Exemple #6
0
def double_conv(data, out_ch):
    param_attr = fluid.ParamAttr(
        name='weights',
        regularizer=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.0),
        initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.33))
    with scope("conv0"):
        data = bn_relu(
            conv(data, out_ch, 3, stride=1, padding=1, param_attr=param_attr))
    with scope("conv1"):
        data = bn_relu(
            conv(data, out_ch, 3, stride=1, padding=1, param_attr=param_attr))
    return data
Exemple #7
0
def sub_net_1(input):
    with scope("conv1_sub1"):
        tmp = conv(input, 32, 3, 2, padding=1)
        tmp = bn(tmp, act='relu')
    with scope("conv2_sub1"):
        tmp = conv(tmp, 32, 3, 2, padding=1)
        tmp = bn(tmp, act='relu')
    with scope("conv3_sub1"):
        tmp = conv(tmp, 64, 3, 2, padding=1)
        tmp = bn(tmp, act='relu')
    with scope("conv3_sub1_proj"):
        tmp = conv(tmp, 128, 1, 1)
        tmp = bn(tmp)
    return tmp
Exemple #8
0
def sub_net_4(input, input_shape):
    tmp = pyramis_pooling(input, input_shape)
    with scope("conv5_4_k1"):
        tmp = conv(tmp, 256, 1, 1)
        tmp = bn(tmp, act='relu')
    tmp = interp(tmp, out_shape=np.ceil(input_shape / 16))
    return tmp
Exemple #9
0
def psp_module(input, out_features):

    cat_layers = []
    sizes = (1, 2, 3, 6)
    for size in sizes:
        psp_name = "psp" + str(size)
        with scope(psp_name):
            pool = fluid.layers.adaptive_pool2d(input,
                                                pool_size=[size, size],
                                                pool_type='avg',
                                                name=psp_name + '_adapool')
            data = conv(pool,
                        out_features,
                        filter_size=1,
                        bias_attr=False,
                        name=psp_name + '_conv')
            data_bn = bn(data, act='relu')
            interp = fluid.layers.resize_bilinear(data_bn,
                                                  out_shape=input.shape[2:],
                                                  name=psp_name + '_interp',
                                                  align_mode=0)
        cat_layers.append(interp)
    cat_layers = [input] + cat_layers
    out = fluid.layers.concat(cat_layers, axis=1, name='psp_cat')

    return out
Exemple #10
0
def _decoder_with_sum_merge(encode_data, decode_shortcut, param_attr):
    encode_data = fluid.layers.resize_bilinear(encode_data,
                                               decode_shortcut.shape[2:])
    encode_data = conv(
        encode_data,
        #cfg.MODEL.DEEPLAB.DECODER.CONV_FILTERS,
        256,
        1,
        1,
        groups=1,
        padding=0,
        param_attr=param_attr)

    with scope('merge'):
        decode_shortcut = conv(
            decode_shortcut,
            #cfg.MODEL.DEEPLAB.DECODER.CONV_FILTERS,
            256,
            1,
            1,
            groups=1,
            padding=0,
            param_attr=param_attr)

        return encode_data + decode_shortcut
Exemple #11
0
def deeplabv3p_nas(img, num_classes, arch=None):
    data, decode_shortcut = nas_backbone(img, arch)
    # 编码器解码器设置
    cfg.MODEL.DEFAULT_EPSILON = 1e-5
    if cfg.MODEL.DEEPLAB.ENCODER_WITH_ASPP:
        data = encoder(data)
    if cfg.MODEL.DEEPLAB.ENABLE_DECODER:
        data = decoder(data, decode_shortcut)

    # 根据类别数设置最后一个卷积层输出,并resize到图片原始尺寸
    param_attr = fluid.ParamAttr(
        name=name_scope + 'weights',
        regularizer=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.0),
        initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01))
    with scope('logit'):
        logit = conv(data,
                     num_classes,
                     1,
                     stride=1,
                     padding=0,
                     bias_attr=True,
                     param_attr=param_attr)
        logit = fluid.layers.resize_bilinear(logit, img.shape[2:])

    return logit
Exemple #12
0
def deeplabv3p(img, num_classes):
    # Backbone设置:xception 或 mobilenetv2
    if 'xception' in cfg.MODEL.DEEPLAB.BACKBONE:
        data, decode_shortcut = xception(img)
    elif 'mobilenet' in cfg.MODEL.DEEPLAB.BACKBONE:
        data, decode_shortcut = mobilenetv2(img)
    else:
        raise Exception("deeplab only support xception and mobilenet backbone")

    # 编码器解码器设置
    cfg.MODEL.DEFAULT_EPSILON = 1e-5
    if cfg.MODEL.DEEPLAB.ENCODER_WITH_ASPP:
        data = encoder(data)
    if cfg.MODEL.DEEPLAB.ENABLE_DECODER:
        data = decoder(data, decode_shortcut)

    # 根据类别数设置最后一个卷积层输出,并resize到图片原始尺寸
    param_attr = fluid.ParamAttr(
        name=name_scope + 'weights',
        regularizer=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.0),
        initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01))
    with scope('logit'):
        with fluid.name_scope('last_conv'):
            logit = conv(data,
                         num_classes,
                         1,
                         stride=1,
                         padding=0,
                         bias_attr=True,
                         param_attr=param_attr)
        logit = fluid.layers.resize_bilinear(logit, img.shape[2:])

    return logit
Exemple #13
0
def deeplabv3p(img, num_classes):
    # Backbone设置:xception 或 mobilenetv2
    data, decode_shortcut = resnet_vd(img)

    # 编码器解码器设置
    #cfg.MODEL.DEFAULT_EPSILON = 1e-5
    #if cfg.MODEL.DEEPLAB.ENCODER_WITH_ASPP:
    data = encoder(data)
    #if cfg.MODEL.DEEPLAB.ENABLE_DECODER:
    data = decoder(data, decode_shortcut)

    # 根据类别数设置最后一个卷积层输出,并resize到图片原始尺寸
    param_attr = fluid.ParamAttr(
        name=name_scope + 'weights',
        regularizer=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.0),
        initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01))

    #if not cfg.MODEL.DEEPLAB.DECODER.OUTPUT_IS_LOGITS:
    with scope('logit'):
        with fluid.name_scope('last_conv'):
            logit = conv(
                    data,
                    num_classes,
                    1,
                    stride=1,
                    padding=0,
                    bias_attr=True,
                    param_attr=param_attr)
    #else:
    #    logit = data

    logit = fluid.layers.resize_bilinear(logit, img.shape[2:])
    return logit
Exemple #14
0
    def exit_flow(self, data):
        block_num = self.bottleneck_params["exit_flow"][0]
        strides = self.bottleneck_params["exit_flow"][1]
        chns = self.bottleneck_params["exit_flow"][2]
        strides = check_data(strides, block_num)
        chns = check_data(chns, block_num)
        #print("exit:", block_num, strides, chns)

        assert (block_num == 2)
        # params to control your flow
        s = self.stride
        block_point = self.block_point
        output_stride = self.output_stride
        #print("exit:", s, block_point, output_stride)
        with scope("exit_flow"):
            with scope('block1'):
                block_point += 1
                stride = strides[0] if check_stride(s * strides[0],
                                                    output_stride) else 1
                data, short_cuts = self.xception_block(data, chns[0],
                                                       [1, 1, stride])
                s = s * stride
                if check_points(block_point, self.decode_points):
                    #print("decode shortcut:", block_point)
                    self.short_cuts[block_point] = short_cuts[1]
                #print("exit:", 0, data.shape)
            with scope('block2'):
                block_point += 1
                stride = strides[1] if check_stride(s * strides[1],
                                                    output_stride) else 1
                data, short_cuts = self.xception_block(
                    data,
                    chns[1], [1, 1, stride],
                    dilation=2,
                    has_skip=False,
                    activation_fn_in_separable_conv=True)
                s = s * stride
                if check_points(block_point, self.decode_points):
                    #print("decode shortcut:", block_point)
                    self.short_cuts[block_point] = short_cuts[1]
                #print("exit:", 1, data.shape)

        self.stride = s
        self.block_point = block_point
        #print("exit:", s, block_point, output_stride)
        return data
Exemple #15
0
    def net(self, x):
        with scope('dsconv1'):
            x = separate_conv(x,
                              self.dw_channels,
                              stride=self.stride,
                              filter=3,
                              act=fluid.layers.relu)
        with scope('dsconv2'):
            x = separate_conv(x,
                              self.dw_channels,
                              stride=self.stride,
                              filter=3,
                              act=fluid.layers.relu)

        x = dropout2d(x, 0.1, is_train=cfg.PHASE == 'train')
        x = conv(x, self.num_classes, 1, bias_attr=True)
        return x
Exemple #16
0
def CCF24(sub2_out, sub4_out, input_shape):
    with scope("conv_sub4"):
        tmp = conv(sub4_out, 128, 3, dilation=2, padding=2)
        tmp = bn(tmp)
    tmp = tmp + sub2_out
    tmp = fluid.layers.relu(tmp)
    tmp = interp(tmp, np.ceil(input_shape / 8))
    return tmp
Exemple #17
0
def learning_to_downsample(x,
                           dw_channels1=32,
                           dw_channels2=48,
                           out_channels=64):
    x = relu(bn(conv(x, dw_channels1, 3, 2)))
    with scope('dsconv1'):
        x = separate_conv(x,
                          dw_channels2,
                          stride=2,
                          filter=3,
                          act=fluid.layers.relu)
    with scope('dsconv2'):
        x = separate_conv(x,
                          out_channels,
                          stride=2,
                          filter=3,
                          act=fluid.layers.relu)
    return x
Exemple #18
0
def CCF124(sub1_out, sub24_out, input_shape):
    tmp = zero_padding(sub24_out, padding=2)
    with scope("conv_sub2"):
        tmp = conv(tmp, 128, 3, dilation=2)
        tmp = bn(tmp)
    tmp = tmp + sub1_out
    tmp = fluid.layers.relu(tmp)
    tmp = interp(tmp, input_shape // 4)
    return tmp
Exemple #19
0
    def net(self, higher_res_feature, lower_res_feature):
        h, w = higher_res_feature.shape[2:]
        lower_res_feature = fluid.layers.resize_bilinear(lower_res_feature,
                                                         [h, w],
                                                         align_mode=0)

        with scope('dwconv'):
            lower_res_feature = relu(
                bn(conv(lower_res_feature, self.out_channels,
                        1)))  #(lower_res_feature)
        with scope('conv_lower_res'):
            lower_res_feature = bn(
                conv(lower_res_feature, self.out_channels, 1, bias_attr=True))
        with scope('conv_higher_res'):
            higher_res_feature = bn(
                conv(higher_res_feature, self.out_channels, 1, bias_attr=True))
        out = higher_res_feature + lower_res_feature

        return relu(out)
Exemple #20
0
def get_logit(data, num_classes):
    # 根据类别数设置最后一个卷积层输出
    param_attr = fluid.ParamAttr(
        name='weights',
        regularizer=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.0),
        initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01))
    with scope("logit"):
        data = conv(
            data, num_classes, 3, stride=1, padding=1, param_attr=param_attr)
    return data
Exemple #21
0
def psp_module(input, out_features):
    # Pyramid Scene Parsing 金字塔池化模块
    # 输入:backbone输出的特征
    # 输出:对输入进行不同尺度pooling, 卷积操作后插值回原始尺寸,并concat
    #       最后进行一个卷积及BN操作

    cat_layers = []
    sizes = (1, 2, 3, 6)
    for size in sizes:
        psp_name = "psp" + str(size)
        with scope(psp_name):
            pool = fluid.layers.adaptive_pool2d(
                input,
                pool_size=[size, size],
                pool_type='avg',
                name=psp_name + '_adapool')
            data = conv(
                pool,
                out_features,
                filter_size=1,
                bias_attr=True,
                name=psp_name + '_conv')
            data_bn = bn(data, act='relu')
            interp = fluid.layers.resize_bilinear(
                data_bn, out_shape=input.shape[2:], name=psp_name + '_interp')
        cat_layers.append(interp)
    cat_layers = [input] + cat_layers[::-1]
    cat = fluid.layers.concat(cat_layers, axis=1, name='psp_cat')

    psp_end_name = "psp_end"
    with scope(psp_end_name):
        data = conv(
            cat,
            out_features,
            filter_size=3,
            padding=1,
            bias_attr=True,
            name=psp_end_name)
        out = bn(data, act='relu')

    return out
Exemple #22
0
    def net(self,
            input,
            output_stride=32,
            num_classes=1000,
            end_points=None,
            decode_points=None):
        self.stride = 2
        self.block_point = 0
        self.output_stride = output_stride
        self.decode_points = decode_points
        self.short_cuts = dict()
        with scope(self.backbone):
            # Entry flow
            data = self.entry_flow(input)
            if check_points(self.block_point, end_points):
                return data, self.short_cuts

            # Middle flow
            data = self.middle_flow(data)
            if check_points(self.block_point, end_points):
                return data, self.short_cuts

            # Exit flow
            data = self.exit_flow(data)
            if check_points(self.block_point, end_points):
                return data, self.short_cuts

            data = fluid.layers.reduce_mean(data, [2, 3], keep_dim=True)
            data = fluid.layers.dropout(data, 0.5)
            stdv = 1.0 / math.sqrt(data.shape[1] * 1.0)
            with scope("logit"):
                out = fluid.layers.fc(
                    input=data,
                    size=num_classes,
                    act='softmax',
                    param_attr=fluid.param_attr.ParamAttr(
                        name='weights',
                        initializer=fluid.initializer.Uniform(-stdv, stdv)),
                    bias_attr=fluid.param_attr.ParamAttr(name='bias'))

            return out
Exemple #23
0
def decoder(encode_data, decode_shortcut):
    # 解码器配置
    # encode_data:编码器输出
    # decode_shortcut: 从backbone引出的分支, resize后与encode_data concat
    # DECODER_USE_SEP_CONV: 默认为真,则concat后连接两个可分离卷积,否则为普通卷积
    param_attr = fluid.ParamAttr(name=name_scope + 'weights',
                                 regularizer=None,
                                 initializer=fluid.initializer.TruncatedNormal(
                                     loc=0.0, scale=0.06))
    with scope('decoder'):
        with scope('concat'):
            decode_shortcut = bn_relu(
                conv(decode_shortcut,
                     48,
                     1,
                     1,
                     groups=1,
                     padding=0,
                     param_attr=param_attr))

            encode_data = fluid.layers.resize_bilinear(
                encode_data, decode_shortcut.shape[2:])
            encode_data = fluid.layers.concat([encode_data, decode_shortcut],
                                              axis=1)
        if cfg.MODEL.DEEPLAB.DECODER_USE_SEP_CONV:
            with scope("separable_conv1"):
                encode_data = separate_conv(encode_data,
                                            256,
                                            1,
                                            3,
                                            dilation=1,
                                            act=relu)
            with scope("separable_conv2"):
                encode_data = separate_conv(encode_data,
                                            256,
                                            1,
                                            3,
                                            dilation=1,
                                            act=relu)
        else:
            with scope("decoder_conv1"):
                encode_data = bn_relu(
                    conv(encode_data,
                         256,
                         stride=1,
                         filter_size=3,
                         dilation=1,
                         padding=1,
                         param_attr=param_attr))
            with scope("decoder_conv2"):
                encode_data = bn_relu(
                    conv(encode_data,
                         256,
                         stride=1,
                         filter_size=3,
                         dilation=1,
                         padding=1,
                         param_attr=param_attr))
        return encode_data
Exemple #24
0
 def net(self, x):
     x, _ = inverted_blocks(x, self.in_channels, self.t,
                            self.block_channels[0], self.num_blocks[0], 2,
                            'inverted_block_1')
     x, _ = inverted_blocks(x, self.block_channels[0], self.t,
                            self.block_channels[1], self.num_blocks[1], 2,
                            'inverted_block_2')
     x, _ = inverted_blocks(x, self.block_channels[1], self.t,
                            self.block_channels[2], self.num_blocks[2], 1,
                            'inverted_block_3')
     x = psp_module(x, self.block_channels[2] // 4)
     with scope('out'):
         x = relu(bn(conv(x, self.out_channels, 1)))
     return x
Exemple #25
0
def decoder(encode_data, decode_shortcut):
    # 解码器配置
    # encode_data:编码器输出
    # decode_shortcut: 从backbone引出的分支, resize后与encode_data concat
    # DECODER_USE_SEP_CONV: 默认为真,则concat后连接两个可分离卷积,否则为普通卷积
    param_attr = fluid.ParamAttr(
        name=name_scope + 'weights',
        regularizer=None,
        initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.06))
    with scope('decoder'):
        #if cfg.MODEL.DEEPLAB.DECODER.USE_SUM_MERGE:
        #    return _decoder_with_sum_merge(encode_data, decode_shortcut,
        #                                   param_attr)

        return _decoder_with_concat(encode_data, decode_shortcut, param_attr)
Exemple #26
0
def get_logit(data, num_classes, name="logit"):
    param_attr = fluid.ParamAttr(
        name=name + 'weights',
        regularizer=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.0),
        initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01))

    with scope(name):
        data = conv(data,
                    num_classes,
                    1,
                    stride=1,
                    padding=0,
                    param_attr=param_attr,
                    bias_attr=True)
    return data
Exemple #27
0
def get_logit_interp(input, num_classes, out_shape, name="logit"):
    # 根据类别数决定最后一层卷积输出, 并插值回原始尺寸
    param_attr = fluid.ParamAttr(
        name=name + 'weights',
        regularizer=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.0),
        initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01))

    with scope(name):
        logit = conv(
            input,
            num_classes,
            filter_size=1,
            param_attr=param_attr,
            bias_attr=True,
            name=name + '_conv')
        logit_interp = fluid.layers.resize_bilinear(
            logit, out_shape=out_shape, name=name + '_interp')
    return logit_interp
Exemple #28
0
def up(data, short_cut, out_ch):
    # 上采样:data上采样(resize或deconv), 并与short_cut concat
    param_attr = fluid.ParamAttr(
        name='weights',
        regularizer=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.0),
        initializer=fluid.initializer.XavierInitializer(),
    )
    with scope("up"):
        if cfg.MODEL.UNET.UPSAMPLE_MODE == 'bilinear':
            data = fluid.layers.resize_bilinear(data, short_cut.shape[2:])
        else:
            data = deconv(data,
                          out_ch // 2,
                          filter_size=2,
                          stride=2,
                          padding=0,
                          param_attr=param_attr)
        data = fluid.layers.concat([data, short_cut], axis=1)
        data = double_conv(data, out_ch)
    return data
Exemple #29
0
def fast_scnn(img, num_classes):
    size = img.shape[2:]
    classifier = Classifier(128, num_classes)

    global_feature_extractor = GlobalFeatureExtractor(64, [64, 96, 128], 128,
                                                      6, [3, 3, 3])
    feature_fusion = FeatureFusionModule(64, 128, 128)

    with scope('learning_to_downsample'):
        higher_res_features = learning_to_downsample(img, 32, 48, 64)
    with scope('global_feature_extractor'):
        lower_res_feature = global_feature_extractor.net(higher_res_features)
    with scope('feature_fusion'):
        x = feature_fusion.net(higher_res_features, lower_res_feature)
    with scope('classifier'):
        logit = classifier.net(x)
        logit = fluid.layers.resize_bilinear(logit, size, align_mode=0)

    if len(cfg.MODEL.MULTI_LOSS_WEIGHT) == 3:
        with scope('aux_layer_higher'):
            higher_logit = aux_layer(higher_res_features, num_classes)
            higher_logit = fluid.layers.resize_bilinear(higher_logit,
                                                        size,
                                                        align_mode=0)
        with scope('aux_layer_lower'):
            lower_logit = aux_layer(lower_res_feature, num_classes)
            lower_logit = fluid.layers.resize_bilinear(lower_logit,
                                                       size,
                                                       align_mode=0)
        return logit, higher_logit, lower_logit
    elif len(cfg.MODEL.MULTI_LOSS_WEIGHT) == 2:
        with scope('aux_layer_higher'):
            higher_logit = aux_layer(higher_res_features, num_classes)
            higher_logit = fluid.layers.resize_bilinear(higher_logit,
                                                        size,
                                                        align_mode=0)
        return logit, higher_logit

    return logit
Exemple #30
0
def encode(data):
    # 编码器设置
    short_cuts = []
    with scope("encode"):
        with scope("block1"):
            data = double_conv(data, 64)
            short_cuts.append(data)
        with scope("block2"):
            data = down(data, 128)
            short_cuts.append(data)
        with scope("block3"):
            data = down(data, 256)
            short_cuts.append(data)
        with scope("block4"):
            data = down(data, 512)
            short_cuts.append(data)
        with scope("block5"):
            data = down(data, 512)
    return data, short_cuts