Exemple #1
0
 def setUp(self):
     cols = ['GarageArea', 'OverallQual', 'BldgType']
     self.dataset = io_tools.read_dataset("data/train.csv")
     self.processed_data = data_tools.preprocess_data(self.dataset,
                                                      feature_columns=cols)
     self.N = self.processed_data[0].shape[0]
     self.ndims = self.processed_data[0].shape[1]
     self.model = linear_regression.LinearRegression(self.ndims, "zeros")
Exemple #2
0
def sarcos_linear_regression():
    X_train, Y_train, X_cv, Y_cv, X_test, Y_test = data.get_data_split(
        [0.6, 0.2, 0.2], normalize=True)
    print('Linear regression, sarcos:')
    print('\tThis will take about 5 seconds, please wait...')
    model = linear_regression.LinearRegression(X_train, Y_train)
    model.train(10000, 0.1, print_iterations=False)
    rmse, prediction = model.test(X_test, Y_test)
    rmse_train, _ = model.test(X_train, Y_train)
    print('\tRMSE: ' + str(rmse))
Exemple #3
0
 def test_total_loss(self):
     self.model = linear_regression.LinearRegression(2,
                                                     'zeros',
                                                     w_decay_factor=0.1)
     self.model.w = np.array([[2], [-2]])
     y = np.array([[1], [1], [1], [-1], [-1], [-1]])
     f = np.array([[0.5], [0], [0.5], [-1], [-1], [-1]])
     loss = self.model.total_loss(f, y)
     self.assertEqual(round(loss, 5),
                      0.5 * (0.5**2. + 1 + 0.5**2. + 0 + 0 + 8 * 0.1))
 def setUp(self):
     self.model = linear_regression.LinearRegression(5, 'zeros')
Exemple #5
0
 def test_init_ones(self):
     self.model = linear_regression.LinearRegression(5, 'ones')
     np.testing.assert_array_equal(np.ones((6, 1)), self.model.w)
Exemple #6
0
 def test_uniform_init(self):
     self.model = linear_regression.LinearRegression(5, 'uniform')
     np.testing.assert_equal(
         np.any(np.equal(np.zeros((6, 1)), self.model.w)), False)
Exemple #7
0
 def setUp(self):
     self.model = linear_regression.LinearRegression(5, 'uniform')