args = parser.parse_args() try: args = parser.parse_args() except: args = parser.parse_known_args()[0] net = None if args.model == 'ShapeNet32Vox': net = model.ShapeNet32Vox() elif args.model == 'ShapeNet128Vox': net = model.ShapeNet128Vox() elif args.model == 'ShapeNetPoints': net = model.ShapeNetPoints() elif args.model == 'SVR': net = model.SVR() # dataset = voxelized_data.VoxelizedDataset( # args.mode, voxelized_pointcloud=args.pointcloud, pointcloud_samples=args.pc_samples, res=args.res, # sample_distribution=args.sample_distribution, sample_sigmas=args.sample_sigmas, # num_sample_points=100, batch_size=1, num_workers=0) num_sample_points = 100 sample_distribution = np.array(args.sample_distribution) sample_sigmas = np.array(args.sample_sigmas) num_samples = np.rint(sample_distribution * num_sample_points).astype(np.uint32) data_sample = load_data(args.datapath, args.res, args.pc_samples, num_samples, sample_sigmas, voxelized_pointcloud=args.pointcloud) # print('Size of inputs {}'.format(data_sample['inputs'].size())) # print('Size of grid_coords {}'.format(data_sample['grid_coords'].size())) # print('Size of occupancies {}'.format(data_sample['occupancies'].size()))
DeviceList, MainGPUID = ptUtils.setupGPUs(args.gpu) print('[ INFO ]: Using {} GPUs with IDs {}'.format(len(DeviceList), DeviceList)) Device = ptUtils.setDevice(MainGPUID) if args.model == 'ShapeNet32Vox': net = model.ShapeNet32Vox() if args.model == 'ShapeNet128Vox': net = model.ShapeNet128Vox() if args.model == 'ShapeNetPoints': net = model.ShapeNetPoints() if args.model == 'SVR': net = model.SVR(gpu_idx=MainGPUID) train_dataset = voxelized_data.VoxelizedDataset( 'train', voxelized_pointcloud=args.pointcloud, pointcloud_samples=args.pc_samples, data_path=args.input_dir_train, res=args.res, sample_distribution=args.sample_distribution, sample_sigmas=args.sample_sigmas, num_sample_points=50000, batch_size=args.batch_size, num_workers=30) val_dataset = voxelized_data.VoxelizedDataset( 'val',