Exemple #1
0
def val(test_loader):
	test_iter = iter(test_loader)

	max_iter = len(data_loader)
	n_correct = 0
	n_total = 0

	for i in range(max_iter):
		data = test_iter.next()
		cpu_images = data[0]
		cpu_labels = data[1]
		[num] = cpu_labels.shape

		utils.loadData(image, cpu_images)
		preds = MODEL(image)

		arg_max = preds.argmax(1).cpu.numpy()
		labels = cpu_labels.numpy()
		correct = np.sum(arg_max == labels)

		n_correct += correct
		n_total   += num

	acc = n_correct / float(n_total)
	return acc
Exemple #2
0
def trainBatch():
    data1 = train_iter1.next()
    data2 = train_iter2.next()
    cpu_images = torch.cat((data1[0], data2[0]), 0)
    cpu_texts1 = data1[1] + data2[1]
    cpu_texts2 = data1[3] + data2[3]

    utils.loadData(image, cpu_images)
    t1, l1 = converter.encode(cpu_texts1, scanned=True)
    utils.loadData(text1_ori, t1)
    utils.loadData(length_ori, l1)
    t2, l2 = converter.encode(cpu_texts2, scanned=True)
    utils.loadData(text2_ori, t2)

    N = len(cpu_texts1)
    if opt.LR is True:
        preds1, preds2 = MODEL(image,
                               length_ori,
                               text1_ori,
                               text2_ori,
                               cpu_texts=cpu_texts1)

        text1_new = text1_ori
        text2_new = text2_ori

        cost_pred1 = criterion(preds1, text1_new) / 2.0
        cost_pred2 = criterion(preds2, text2_new) / 2.0
        loss_pred_avg1.add(cost_pred1)
        loss_pred_avg2.add(cost_pred2)

        cost = cost_pred1 + cost_pred2
    else:
        preds1 = MODEL(image,
                       length_ori,
                       text1_ori,
                       None,
                       cpu_texts=cpu_texts1)

        text1_new = text1_ori

        cost_pred1 = criterion(preds1, text1_new)
        loss_pred_avg1.add(cost_pred1)

        cost = cost_pred1

    loss_avg.add(cost)
    MODEL.zero_grad()
    cost.backward()
    optimizer.step()

    return cost
Exemple #3
0
def train_batch():
    data = train_iter.next()
    cpu_images = data[0]
    cpu_labels = data[1]

    utils.loadData(image, cpu_images)
    utils.loadData(ori_label, cpu_labels)

    # print('ori_label.shape',ori_label.shape)

    preds = MODEL(image)
    # print('pred---', preds.shape)
    # print('label--', ori_label.shape)
    cost = criterion(preds, ori_label)
    # print('cost-------', cost)

    loss.add(cost)

    MODEL.zero_grad()
    cost.backward()
    optimizer.step()
Exemple #4
0
def main():
    input_size = 10000
    embedding_size = 24
    output_size = 5
    learning_rate = 0.01
    oov_token = '<OOV>'
    loss = 'sparse_categorical_crossentropy'
    optimizer = Adam(learning_rate=learning_rate)
    epochs = 1
    train_val_split = 0.2

    sentences, sentiments = helper.get_data('data/train.tsv')
    sentences = helper.remove_stopwords(sentences, 'data/stopwords')

    max_length = len(max(sentences, key=len))

    tokenizer = helper.get_tokenizer(input_size, oov_token, sentences)

    padded_sentences = helper.convert_to_sequences(tokenizer, sentences,
                                                   max_length)

    train_padded_sentences, validation_padded_sentences, train_sentiments, validation_sentiments = \
        train_test_split(
            padded_sentences, sentiments, test_size=train_val_split, random_state=42
        )

    train_padded_sentences = np.array(train_padded_sentences)
    train_sentiments = np.array(train_sentiments)
    validation_padded_sentences = np.array(validation_padded_sentences)
    validation_sentiments = np.array(validation_sentiments)

    layers = [
        tf.keras.layers.Embedding(input_size,
                                  embedding_size,
                                  input_length=max_length),
        # tf.keras.layers.LSTM(32),

        # tf.keras.layers.Conv1D(filters=64, kernel_size=5, activation='relu'),
        # tf.keras.layers.MaxPooling1D(pool_size=4),
        # tf.keras.layers.Dropout(0.2),
        tf.keras.layers.GlobalAveragePooling1D(),
        tf.keras.layers.Dense(units=24, activation='relu'),
        tf.keras.layers.Dense(units=output_size, activation='softmax')
    ]

    model = MODEL(input_size, output_size, layers, loss, optimizer, epochs)
    model.__train__(train_padded_sentences, train_sentiments,
                    validation_padded_sentences, validation_sentiments)
    model.__plot_graph__('accuracy')
Exemple #5
0
def val_beam(dataset, max_iter=9999):
    rotate90 = dataset.ifRotate90

    data_loader = torch.utils.data.DataLoader(dataset,
                                              shuffle=False,
                                              batch_size=opt.batchSize,
                                              num_workers=1)  # opt.batchSize
    val_iter = iter(data_loader)
    max_iter = min(max_iter, len(data_loader))
    n_correct = 0
    n_total = 0

    for i in range(max_iter):
        data = val_iter.next()
        ori_cpu_images = data[0]
        flag_rotate90 = data[2]
        cpu_texts1 = data[1]
        cpu_texts2 = data[3]

        t1, l1 = converter.encode(cpu_texts1, scanned=True)
        t2, l2 = converter.encode(cpu_texts2, scanned=True)
        utils.loadData(text1_ori, t1)
        utils.loadData(text2_ori, t2)
        utils.loadData(length_ori, l1)
        All_preds_add5EOS1 = []
        All_scores1 = []
        All_preds_add5EOS2 = []
        All_scores2 = []

        cpu_images = ori_cpu_images

        utils.loadData(image, cpu_images)
        if opt.LR:
            local_preds1, local_scores1, local_preds2, local_scores2 = MODEL(
                image,
                length_ori,
                text1_ori,
                text2_ori,
                test=True,
                cpu_texts=cpu_texts1)
            All_preds_add5EOS1.append(local_preds1)
            All_preds_add5EOS2.append(local_preds2)
            All_scores1.append(local_scores1)
            All_scores2.append(local_scores2)
        else:
            local_preds1, local_scores1 = MODEL(image,
                                                length_ori,
                                                text1_ori,
                                                None,
                                                test=True,
                                                cpu_texts=cpu_texts1)
            All_preds_add5EOS1.append(local_preds1)
            All_scores1.append(local_scores1)

        length_label = (length_ori - 1).data.cpu().numpy()

        # %%% Left/Right Rotate %%%
        if rotate90 == True:
            PIL_imgs = [
                toPIL(ori_cpu_images[i].div(2).sub(-0.5))
                for i in range(ori_cpu_images.shape[0])
            ]
            PIL_imgs_left90 = [
                PIL_imgs[i].transpose(Image.ROTATE_90).resize(
                    (opt.imgW, opt.imgH), Image.BILINEAR)
                if flag_rotate90[i] else PIL_imgs[i]
                for i in range(ori_cpu_images.shape[0])
            ]
            PIL_imgs_right90 = [
                PIL_imgs[i].transpose(Image.ROTATE_270).resize(
                    (opt.imgW, opt.imgH), Image.BILINEAR)
                if flag_rotate90[i] else PIL_imgs[i]
                for i in range(ori_cpu_images.shape[0])
            ]
            imgs_Tensor_left90 = [
                toTensor(PIL_imgs_left90[i])
                for i in range(ori_cpu_images.shape[0])
            ]
            imgs_Tensor_right90 = [
                toTensor(PIL_imgs_right90[i])
                for i in range(ori_cpu_images.shape[0])
            ]

            # Left
            cpu_images = torch.stack(imgs_Tensor_left90)
            cpu_images.sub_(0.5).div_(0.5)
            utils.loadData(image, cpu_images)
            if opt.LR:
                local_preds1, local_scores1, local_preds2, local_scores2, _ = MODEL(
                    image,
                    length_ori,
                    text1_ori,
                    text2_ori,
                    test=True,
                    cpu_texts=cpu_texts1)
                All_preds_add5EOS1.append(local_preds1)
                All_preds_add5EOS2.append(local_preds2)
                All_scores1.append(local_scores1)
                All_scores2.append(local_scores2)
            else:
                local_preds1, local_scores1, _ = MODEL(image,
                                                       length_ori,
                                                       text1_ori,
                                                       None,
                                                       test=True,
                                                       cpu_texts=cpu_texts1)
                All_preds_add5EOS1.append(local_preds1)
                All_scores1.append(local_scores1)

            # Right
            cpu_images = torch.stack(imgs_Tensor_right90)
            cpu_images.sub_(0.5).div_(0.5)
            utils.loadData(image, cpu_images)
            if opt.LR:
                local_preds1, local_scores1, local_preds2, local_scores2, _ = MODEL(
                    image,
                    length_ori,
                    text1_ori,
                    text2_ori,
                    test=True,
                    cpu_texts=cpu_texts1)
                All_preds_add5EOS1.append(local_preds1)
                All_preds_add5EOS2.append(local_preds2)
                All_scores1.append(local_scores1)
                All_scores2.append(local_scores2)
            else:
                local_preds1, local_scores1, _ = MODEL(image,
                                                       length_ori,
                                                       text1_ori,
                                                       None,
                                                       test=True,
                                                       cpu_texts=cpu_texts1)
                All_preds_add5EOS1.append(local_preds1)
                All_scores1.append(local_scores1)

        # Start to decode
        preds_add5EOS1 = []
        preds_score1 = []
        for j in range(cpu_images.size(0)):
            text_begin = 0 if j == 0 else (length_ori.data[:j].sum() + j * 5)
            max_score = -99999
            max_index = 0
            for index in range(len(All_scores1)):
                local_score = All_scores1[index][j]
                if local_score > max_score:
                    max_score = local_score
                    max_index = index
            preds_add5EOS1.extend(
                All_preds_add5EOS1[max_index][text_begin:text_begin +
                                              int(length_ori[j].data) + 5])
            preds_score1.append(max_score)
        preds_add5EOS1 = torch.stack(preds_add5EOS1)
        sim_preds_add5eos1 = converter.decode(preds_add5EOS1.data,
                                              length_ori.data + 5)

        if opt.LR:
            preds_add5EOS2 = []
            preds_score2 = []
            for j in range(cpu_images.size(0)):
                text_begin = 0 if j == 0 else (length_ori.data[:j].sum() +
                                               j * 5)
                max_score = -99999
                max_index = 0
                for index in range(len(All_scores2)):
                    local_score = All_scores2[index][j]
                    if local_score > max_score:
                        max_score = local_score
                        max_index = index
                preds_add5EOS2.extend(
                    All_preds_add5EOS2[max_index][text_begin:text_begin +
                                                  int(length_ori[j].data) + 5])
                preds_score2.append(max_score)
            preds_add5EOS2 = torch.stack(preds_add5EOS2)
            sim_preds_add5eos2 = converter.decode(preds_add5EOS2.data,
                                                  length_ori.data + 5)

        if opt.LR:
            batch_index = 0
            for pred1, target1, pred2, target2 in zip(sim_preds_add5eos1,
                                                      cpu_texts1,
                                                      sim_preds_add5eos2,
                                                      cpu_texts2):
                if preds_score1[batch_index] > preds_score2[batch_index]:
                    pred = pred1
                    target = target1
                else:
                    pred = pred2
                    target = target2

                pred = pred.split(opt.sep)[0] + opt.sep
                test_alphabet = dataset.test_alphabet.split(opt.sep)
                pred = ''.join(
                    pred[i].lower() if pred[i].lower() in test_alphabet else ''
                    for i in range(len(pred)))
                target = ''.join(target[i].lower() if target[i].lower() in
                                 test_alphabet else ''
                                 for i in range(len(target)))

                if pred.lower() == target.lower():
                    n_correct += 1
                n_total += 1
                batch_index += 1
        else:
            for pred, target in zip(sim_preds_add5eos1, cpu_texts1):
                pred = pred.split(opt.sep)[0] + opt.sep
                test_alphabet = dataset.test_alphabet.split(opt.sep)
                pred = ''.join(
                    pred[i].lower() if pred[i].lower() in test_alphabet else ''
                    for i in range(len(pred)))
                target = ''.join(target[i].lower() if target[i].lower() in
                                 test_alphabet else ''
                                 for i in range(len(target)))

                if pred.lower() == target.lower():
                    n_correct += 1
                n_total += 1

    accuracy = n_correct / float(n_total)

    dataset_name = dataset.root.split('/')[-1]
    print(dataset_name + ' ACCURACY -----> %.1f%%, ' % (accuracy * 100.0))
    return accuracy
Exemple #6
0
    train_dataset_2,
    batch_size=batchSize2,
    shuffle=False,
    sampler=dataset.randomSequentialSampler(train_dataset_2, batchSize2),
    num_workers=int(opt.workers))

test_dataset1 = dataset.lmdbDataset(test=True,
                                    root=opt.test_1,
                                    transform=dataset.resizeNormalize(
                                        (opt.imgW, opt.imgH)))

nclass = len(opt.alphabet.split(opt.sep))
converter = utils.strLabelConverterForAttention(opt.alphabet, opt.sep)
criterion = torch.nn.CrossEntropyLoss()

MODEL = MODEL(opt.n_bm, nclass, dec_layer=opt.dec_layer, LR=opt.LR)

# print("MODEL have {} paramerters in total".format(sum(x.numel() for x in MODEL.parameters())))

if opt.MODEL != '':
    print('loading pretrained model from %s' % opt.MODEL)
    state_dict = torch.load(opt.MODEL)
    MODEL_state_dict_rename = OrderedDict()
    for k, v in state_dict.items():
        name = k.replace("module.", "")  # remove `module.`
        MODEL_state_dict_rename[name] = v
    MODEL.load_state_dict(MODEL_state_dict_rename, strict=True)

image = torch.FloatTensor(opt.batchSize, 1, opt.imgH, opt.imgW)
text1_ori = torch.LongTensor(opt.batchSize * 5)
text2_ori = torch.LongTensor(opt.batchSize * 5)
Exemple #7
0
cudnn.benchmark = True

if torch.cuda.is_available() and not opt.cuda:
    print(
        "WARNING: You have a CUDA device, so you should probably run with --cuda"
    )

test_dataset1 = dataset.lmdbDataset(test=True,
                                    root=opt.test_1,
                                    transform=dataset.resizeNormalize(
                                        (opt.imgW, opt.imgH)))

nclass = len(opt.alphabet.split(opt.sep))
converter = utils.strLabelConverterForAttention(opt.alphabet, opt.sep)

MODEL = MODEL(opt.n_bm, nclass, dec_layer=opt.dec_layer, LR=opt.LR)

# print("MODEL have {} paramerters in total".format(sum(x.numel() for x in MODEL.parameters())))

if opt.MODEL != '':
    print('loading pretrained model from %s' % opt.MODEL)
    state_dict = torch.load(opt.MODEL)
    MODEL_state_dict_rename = OrderedDict()
    for k, v in state_dict.items():
        name = k.replace("module.", "")  # remove `module.`
        MODEL_state_dict_rename[name] = v
    MODEL.load_state_dict(MODEL_state_dict_rename, strict=True)

image = torch.FloatTensor(opt.batchSize, 1, opt.imgH, opt.imgW)
text1_ori = torch.LongTensor(opt.batchSize * 5)
text2_ori = torch.LongTensor(opt.batchSize * 5)
Exemple #8
0
def Load_train_data(args):
	# Train data
	train_dataset_1 = dataset.lmdbDataset( args.alphabet,root=args.train_1, 
		transform=dataset.resizeNormalize((args.imgW, args.imgH)))
	assert train_dataset_1
	train_dataset = train_dataset_1
	
	if args.train_2!=None:
	train_dataset_2 = dataset.lmdbDataset( args.alphabet,root=args.train_2, 
		transform=dataset.resizeNormalize((args.imgW, args.imgH)))
	assert train_dataset_2
	train_dataset = torch.utils.data.ConcatDataset([train_dataset, train_dataset_2])

	if args.train_3!=None:
	train_dataset_3 = dataset.lmdbDataset( args.alphabet,root=args.train_3, 
		transform=dataset.resizeNormalize((args.imgW, args.imgH)))
	assert train_dataset_3
	train_dataset = torch.utils.data.ConcatDataset([train_dataset, train_dataset_3])
# 该接口主要用来将自定义的数据读取接口的输出或者PyTorch已有的数据读取接口的输入按照batch size封装成Tensor
	# train_loader = torch.utils.data.DataLoader(
	# 	train_dataset, batch_size=args.batchSize,
	# 	shuffle=False,sampler=dataset.randomSequentialSampler(train_dataset, args.batchSize),
	# 	num_workers=int(args.workers))
	train_loader = torch.utils.data.DataLoader(
		train_dataset, batch_size=args.batchSize,
		shuffle=False,
		num_workers=int(args.workers))

	return train_loader

def Load_test_data(dataset_name):
	dataset = dataset.lmdbDataset( args.alphabet1,test=True,root=dataset_name, 
		transform=dataset.resizeNormalize((args.imgW, args.imgH)))

	test_loader = torch.utils.data.DataLoader(
			dataset, shuffle=False, batch_size=args.batchSize, num_workers=int(args.workers))

	return test_loader


def set_random_seed(random_seed):
	random.seed(random_seed)
	np.random.seed(random_seed)
	torch.manual_seed(random_seed)
	# print(random.seed)


def train_batch():
    data = train_iter.next()
    cpu_images = data[0]
    cpu_labels = data[1]
    
    utils.loadData(image, cpu_images)
	utils.loadData(ori_label, cpu_labels)

    label = utils.label_convert(ori_label, nclass) ## 进行 one-hot 编码
	print("label size", label.shape)

    preds = MODEL(image)
    cost_pred = criterion(preds, label)
    cost = cost_pred
 
    loss_avg.add(cost)
    
    MODEL.zero_grad()
    cost.backward()
    optimizer.step()
Exemple #9
0
	args = parse_args()
	print(args)
	set_random_seed(args.random_seed)
	train_loader = Load_train_data(args)

	if args.test_1!=None:	
		test_loader1 = Load_train_data(args.test_1)
	if args.test_2!=None:	
		test_loader2 = Load_train_data(args.test_2)
	if args.test_3!=None:	
		test_loader3 = Load_train_data(args.test_3)

	nclass = len(args.alphabet.split(args.sep))
	criterion = torch.nn.CrossEntropyLoss()

	MODEL = MODEL(nclass)

	image = torch.FloatTensor(args.batchSize, 1, args.imgH, args.imgW)
	ori_label = torch.IntTensor(args.batchSize)
	label = torch.IntTensor(args.batchSize, nclass)

	if args.cuda:
		MODEL.cuda()
		MODEL = torch.nn.DataParallel(MODEL, device_ids=range(args.ngpu))
		image = image.cuda()
		ori_label = ori_label.cuda()
		label = label.cuda()
		criterion = criterion.cuda()
	# loss averager
	loss_pred = utils.averager()
Exemple #10
0
import numpy as np
import cv2
from models.model import MODEL
from models.transformer.Constants import UNK,PAD,BOS,EOS,PAD_WORD,UNK_WORD,BOS_WORD,EOS_WORD
import os,sys,pdb

model_path = sys.argv[1]
img_path = sys.argv[2]
img_name = img_path.split('.')[0].split('/')[-1]

alphabet = '0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ! " \' # $ % & ( ) * + , - . / : ; < = > ? @ [ \\ ] _ ` ~'
n_bm = 5
imgW = 160
imgH = 48
nclass = len(alphabet.split(' '))
MODEL = MODEL(n_bm, nclass)


if torch.cuda.is_available():
    MODEL = MODEL.cuda()

print('loading pretrained model from %s' % model_path)
state_dict = torch.load(model_path)
MODEL_state_dict_rename = OrderedDict()
for k, v in state_dict.items():
    name = k.replace("module.", "") # remove `module.`
    MODEL_state_dict_rename[name] = v
MODEL.load_state_dict(MODEL_state_dict_rename)

for p in MODEL.parameters():
    p.requires_grad = False
Exemple #11
0
    print(args)
    set_random_seed(args.random_seed)

    train_loader = Load_train_data(args)

    if args.test_1 != None:
        test_loader1 = Load_test_data(args, args.test_1)
    if args.test_2 != None:
        test_loader2 = Load_test_data(args, args.test_2)
    if args.test_3 != None:
        test_loader3 = Load_test_data(args, args.test_3)

    nclass = 2
    criterion = torch.nn.CrossEntropyLoss()

    MODEL = MODEL()

    image = torch.FloatTensor(args.batchSize, 1, args.imgH, args.imgW)
    ori_label = torch.LongTensor(args.batchSize)

    if args.cuda:
        MODEL.cuda()
        # MODEL = torch.nn.DataParallel(MODEL, device_ids=range(args.ngpu))
        image = image.cuda()
        ori_label = ori_label.cuda()
        criterion = criterion.cuda()
    # # loss averager
    loss = utils.averager()

    optimizer = torch.optim.Adadelta(filter(lambda p: p.requires_grad,
                                            MODEL.parameters()),