def train(epochs, train_loader, dev_loader, lr, seed, log_interval,
          output_dir):
    """Train the model. Store snapshot models in the output_dir alongside
    evaluations on the dev set after each epoch
    """

    model = Net()

    optimizer = optim.Adam(model.parameters(), lr=lr)

    measure_size(model)

    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda:0" if use_cuda else "cpu")
    print("Using device: ", device)

    if use_cuda:
        torch.cuda.manual_seed(seed)
    else:
        torch.manual_seed(seed)

    #torch.backends.cudnn.benchmark = False
    #torch.backends.cudnn.deterministic = True

    model.to(device)

    for epoch in range(1, epochs):

        model.train()
        total_loss = 0.0
        for batch_idx, (data, target) in enumerate(train_loader):
            if use_cuda:
                data, target = data.to(device), target.to(device)
            data = data.unsqueeze_(1)

            optimizer.zero_grad()
            output = model(data)
            loss = F.nll_loss(output, target)
            total_loss += loss.item()
            loss.backward()
            optimizer.step()

            if batch_idx % log_interval == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                    100. * batch_idx / len(train_loader), loss.item()))

        print("Total loss = %.6f" % (total_loss / len(train_loader.dataset)))

        test(model, dev_loader,
             os.path.join(output_dir, 'dev-eer-' + str(epoch)))

        torch.save(model, os.path.join(output_dir,
                                       'iter' + str(epoch) + '.mdl'))
Exemple #2
0
if opt.resume:
    if os.path.isfile(opt.resume):
        print("=> loading checkpoint '{}'".format(opt.resume))
        checkpoint = torch.load(opt.resume)
        opt.start_epoch = checkpoint["epoch"] + 1
        print(opt.start_epoch)
        model.load_state_dict(checkpoint["model"].state_dict())
    else:
        print("=> no checkpoint found at '{}'".format(opt.resume))

if cuda:
    model = model.cuda()
    criterion = criterion.cuda()

optimizer = optim.Adam(model.parameters(),
                       lr=opt.lr,
                       betas=(0.9, 0.999),
                       eps=1e-8)

for epoch in range(opt.start_epoch, opt.nEpochs + 1):
    train(model, epoch)

    # learning rate is decayed by a factor of 2 every 200 epochs
    if (epoch + 1) % 500 == 0:
        for param_group in optimizer.param_groups:
            param_group['lr'] /= 10.0
        print('Learning rate decay: lr={}'.format(
            optimizer.param_groups[0]['lr']))

    if (epoch + 1) % (opt.snapshots) == 0:
Exemple #3
0
import torch
import torch.optim as optim
import torch.nn as nn
from torch.autograd import Variable
from config import MODEL_PATH, DATA_PATH
from models.model import transform, Net
from data import loadTrainData

trainset, trainloader = loadTrainData()

net = Net()
if os.path.exists(MODEL_PATH):
    net.load_state_dict(torch.load(MODEL_PATH))

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

for epoch in range(2):  # loop over the dataset multiple times

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs
        inputs, labels = data

        # wrap them in Variable
        inputs, labels = Variable(inputs), Variable(labels)

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
Exemple #4
0
                         transform=image_transforms['valid'])
}


# Dataloader iterators, make sure to shuffle
dataloaders = {
    'train': DataLoader(data['train'], batch_size = 64, shuffle = True, num_workers = 8, pin_memory = True),
    'valid': DataLoader(data['valid'], batch_size =64, shuffle = True, num_workers = 8, pin_memory = True),
}

net = Net()
print(net)
net.to(device)

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-5)

epoches=300

eval_acc_list = []
is_best = False
###训练网络
for epoch in range(epoches):
    train_loss = 0.
    train_acc = 0.
    for inputs, targets in dataloaders['train']:
    #get the inputs
        inputs = inputs.to(device)
        targets=targets.to(device)
    #zero the parameter gradients
        
Exemple #5
0
class Trainer(object):
    def __init__(self, args):
        self.args = args
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.prepare_data()
        self.setup_train()

    def prepare_data(self):
        train_val = MnistDataset(
            self.args.train_image_file,
            self.args.train_label_file,
            transform=transforms.Compose([ToTensor()]),
        )
        train_len = int(0.8 * len(train_val))
        train_ds, val_ds = torch.utils.data.random_split(
            train_val, [train_len, len(train_val) - train_len]
        )
        print("Train {}, val {}".format(len(train_ds), len(val_ds)))
        self.train_loader = torch.utils.data.DataLoader(
            train_ds,
            batch_size=self.args.batch_size,
            collate_fn=collate_fn,
            shuffle=True,
        )
        self.val_loader = torch.utils.data.DataLoader(
            val_ds,
            batch_size=self.args.batch_size,
            collate_fn=collate_fn,
            shuffle=False,
        )

    def setup_train(self):
        self.model = Net().to(self.device)
        self.optimizer = torch.optim.SGD(self.model.parameters(), lr=self.args.lr)
        self.criterion = nn.CrossEntropyLoss().to(self.device)
        if not os.path.isdir(self.args.ckpt):
            os.mkdir(self.args.ckpt)

    def train_one_epoch(self):
        train_loss = 0.0
        self.model.train()
        for i, sample in enumerate(self.train_loader):
            X, Y_true = sample["X"].to(self.device), sample["Y"].to(self.device)
            self.optimizer.zero_grad()
            output = self.model(X)
            loss = self.criterion(output, Y_true)
            loss.backward()
            self.optimizer.step()
            train_loss += loss.item()
        return train_loss / len(self.train_loader)

    def evaluate(self):
        val_loss = 0.0
        self.model.eval()
        predicts = []
        truths = []
        with torch.no_grad():
            for i, sample in enumerate(self.val_loader):
                X, Y_true = sample["X"].to(self.device), sample["Y"].to(self.device)
                output = self.model(X)
                loss = self.criterion(output, Y_true)
                val_loss += loss.item()
                predicts.append(torch.argmax(output, dim=1))
                truths.append(Y_true)
        predicts = torch.cat(predicts, dim=0)
        truths = torch.cat(truths, dim=0)
        acc = torch.sum(torch.eq(predicts, truths))
        return acc / len(predicts), val_loss / (len(self.val_loader))

    def run(self):
        min_loss = 10e4
        max_acc = 0
        for epoch in range(self.args.epochs):
            train_loss = self.train_one_epoch()
            val_acc, val_loss = self.evaluate()

            if val_acc > max_acc:
                max_acc = val_acc
                torch.save(
                    self.model.state_dict(),
                    os.path.join(
                        self.args.ckpt,
                        "{}_{}_{:.4f}.pth".format(self.args.name, epoch, max_acc),
                    ),
                )
            print(
                "Epoch {}, loss {:.4f}, val_acc {:.4f}".format(
                    epoch, train_loss, val_acc
                )
            )
Exemple #6
0
}

# Neural network and optimizer
# We define neural net in model.py so that it can be reused by the evaluate.py script

model = Net(features_train.shape[1])

print(model)

if use_cuda:
    print('Using GPU')
    model.cuda()
else:
    print('Using CPU')

optimizer = optim.SGD(model.parameters(),
                      lr=config["lr"],
                      momentum=config["momentum"])
criterion = nn.CrossEntropyLoss()

# Run the functions and save the best model in the function model_ft.
model_ft, losses_train, accuracy_train, losses_val, accuracy_val = train_model(
    model,
    criterion,
    optimizer,
    dataloders,
    dataset_sizes,
    use_cuda,
    num_epochs=config["epochs"])

plt.figure(1)
with open("../data/configuration.json", "r") as file:
    data = json.load(file)
data = json.loads(json.dumps(data))
path = data['data']['paths']["train"]
type_ = "train/audio"
BATCH_SIZE = 32
N_EPOCHS = 5
N_classes = 30
lr = 0.001
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = Net(BATCH_SIZE, 1, 128, 1).to(device)

MAX_NUM_WAVS_PER_CLASS = 2**27 - 1  # ~134M
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9)


def train(epoch, data):
    net.train().to(device)
    # zero the parameter gradients
    optimizer.zero_grad()
    inputs, labels = data
    # print(type(inputs))
    inputs = torch.from_numpy(np.asarray(inputs).astype(np.float32))
    permutation = torch.randperm(inputs.size()[0])
    running_loss = 0
    # print(inputs.size()[0])
    count = 0
    batch_losses = []
    for batch_idx in range(0, inputs.size()[0], BATCH_SIZE):
    for k, v in mask_checkpoint.items():
        name = k[7:]  # remove module.
        new_mask_state_dict[name] = v

    model.load_state_dict(new_mask_state_dict)'''

model.cuda()

if multi_gpus:
    model = nn.DataParallel(model).to(device)
else:
    model = model.to(device)

if args.optimizer == 'SGD':
    optimizer = torch.optim.SGD(model.parameters(),
                                lr=args.lr,
                                momentum=MOMENTUM,
                                weight_decay=WEIGHT_DECAY)
elif args.optimizer == 'Adam':
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 betas=(0.9, 0.99),
                                 eps=1e-08,
                                 weight_decay=WEIGHT_DECAY)
else:
    print('Optimizer value error!')

loss_func = torch.nn.CrossEntropyLoss()

eval_acc_list = []