def define_G(opt, name='network_G'): opt_net = opt[name] which_model = opt_net['which_model_G'] if which_model == 'RRDBNet': netG = RRDBNet_arch.RRDBNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'], nb=opt_net['nb']) elif which_model == 'RRDBNetSEG': netG = RRDBNet_arch.RRDBNetSEG(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'], nb=opt_net['nb'], segm_mask=opt['train']['segm_mask'], scale=opt_net['scale']) else: raise NotImplementedError('Generator model [{:s}] not recognized'.format(which_model)) return netG
def define_G(opt): opt_net = opt['network_G'] which_model = opt_net['which_model_G'] if which_model == 'MSRResNet': netG = SRResNet_arch.MSRResNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'], nb=opt_net['nb'], upscale=opt_net['scale'], differential=opt_net['diff']) elif which_model == 'RRDBNet': netG = RRDBNet_arch.RRDBNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'], nb=opt_net['nb'], differential=opt_net['diff'], time_dependent=opt_net['time_dependent'], adjoint=opt_net['adjoint'], sb=opt_net['sb']) elif which_model == 'ReacDiff': netG = rd_net_arch.ReacDiff(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'], nb=opt_net['nb'], differential=opt_net['diff']) # elif which_model == 'sft_arch': # SFT-GAN # netG = sft_arch.SFT_Net() else: raise NotImplementedError( 'Generator model [{:s}] not recognized'.format(which_model)) return netG
def define_G(opt): opt_net = opt['network_G'] which_model = opt_net['which_model_G'] if which_model == 'MSRResNet': netG = SRResNet_arch.MSRResNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'], nb=opt_net['nb'], upscale=opt_net['scale']) elif which_model == 'RRDBNet': netG = RRDBNet_arch.RRDBNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'], nb=opt_net['nb']) elif which_model == 'Predictor': netG = sftmd_arch.Predictor() elif which_model == 'Corrector': netG = sftmd_arch.Corrector() elif which_model == 'SFTMD': netG = sftmd_arch.SFTMD() elif which_model == 'SRResNet': netG = sftmd_arch.SRResNet() elif which_model == 'SFTMD_DEMO': netG = sftmd_arch.SFTMD_DEMO() # elif which_model == 'sft_arch': # SFT-GAN # netG = sft_arch.SFT_Net() else: raise NotImplementedError('Generator model [{:s}] not recognized'.format(which_model)) return netG
def define_G(opt): opt_net = opt["network_G"] which_model = opt_net["which_model_G"] if which_model == "MSRResNet": netG = SRResNet_arch.MSRResNet( in_nc=opt_net["in_nc"], out_nc=opt_net["out_nc"], nf=opt_net["nf"], nb=opt_net["nb"], upscale=opt_net["scale"], ) elif which_model == "RRDBNet": netG = RRDBNet_arch.RRDBNet( in_nc=opt_net["in_nc"], out_nc=opt_net["out_nc"], nf=opt_net["nf"], nb=opt_net["nb"], ) elif which_model == "Predictor": netG = sftmd_arch.Predictor( in_nc=opt_net["in_nc"], nf=opt_net["nf"], code_len=opt_net["code_length"] ) elif which_model == "Corrector": netG = sftmd_arch.Corrector( in_nc=opt_net["in_nc"], nf=opt_net["nf"], code_len=opt_net["code_length"] ) elif which_model == "SFTMD": netG = sftmd_arch.SFTMD( in_nc=opt_net["in_nc"], out_nc=opt_net["out_nc"], nf=opt_net["nf"], nb=opt_net["nb"], scale=opt_net["upscale"], input_para=opt_net["code_length"], ) elif which_model == "SRResNet": netG = sftmd_arch.SRResNet() elif which_model == "SFTMD_DEMO": netG = sftmd_arch.SFTMD_DEMO( in_nc=opt_net["in_nc"], out_nc=opt_net["out_nc"], nf=opt_net["nf"], nb=opt_net["nb"], scale=opt_net["upscale"], input_para=opt_net["code_length"], ) # elif which_model == 'sft_arch': # SFT-GAN # netG = sft_arch.SFT_Net() else: raise NotImplementedError( "Generator model [{:s}] not recognized".format(which_model) ) return netG
def define_G(opt): opt_net = opt which_model = opt_net.which_model_G if which_model == 'RRDBNet': netG = RRDBNet_arch.RRDBNet(in_nc=opt_net.G_in_nc, out_nc=opt_net.out_nc, nf=opt_net.G_nf, nb=opt_net.nb) else: raise NotImplementedError( 'Generator model [{:s}] not recognized'.format(which_model)) return netG
def define_G(opt): opt_net = opt['network_G'] which_model = opt_net['which_model_G'] if which_model == 'MSRResNet': netG = SRResNet_arch.MSRResNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'], nb=opt_net['nb'], upscale=opt_net['scale']) elif which_model == 'RRDBNet': netG = RRDBNet_arch.RRDBNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'], nb=opt_net['nb']) elif which_model == 'DWUNet': netG = DWUNet_arch.DWUNet() elif which_model == 'RFDNet': netG = RFDNet_arch.RFDN() raise NotImplementedError( 'Generator model [{:s}] not recognized'.format(which_model)) return netG
def define_G(opt): opt_net = opt['network_G'] which_model = opt_net['which_model_G'] if which_model == 'RRDBNet': netG = RRDBNet_arch.RRDBNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'], nb=opt_net['nb'], scale=opt['scale'], opt=opt) elif which_model == 'EDSRNet': Arch = find_model_using_name(which_model) netG = Arch(scale=opt['scale']) elif which_model == 'rankSRGAN': Arch = find_model_using_name(which_model) netG = Arch(upscale=opt['scale']) # elif which_model == 'sft_arch': # SFT-GAN # netG = sft_arch.SFT_Net() else: raise NotImplementedError('Generator model [{:s}] not recognized'.format(which_model)) return netG
def define_G(opt): opt_net = copy(opt['network_G']) which_model = opt_net.pop('which_model_G') if 'scale' in opt_net: scale = opt_net.pop('scale') if which_model == 'MSRResNet': netG = SRResNet_arch.MSRResNet(**opt_net, upscale=scale) elif which_model == 'RRDBNet': netG = RRDBNet_arch.RRDBNet(**opt_net) elif which_model == 'USRGAN': netG = USRGAN_arch.USRGAN(**opt_net) elif which_model == 'USRGANLarge': netG = USRGANLarge_arch.USRGANLarge(**opt_net) elif which_model == 'USRGAN_conns': netG = USRGAN_Connections_arch.USRGANLarge(**opt_net) elif which_model == 'BOWGAN': netG = BOWGAN_arch.BOWGAN(**opt_net) else: raise NotImplementedError('Generator model [{:s}] not recognized'.format(which_model)) return netG
def define_G(opt): opt_net = opt['network_G'] which_model = opt_net['which_model_G'] if which_model == 'MSRResNet': netG = SRResNet_arch.MSRResNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'], nb=opt_net['nb'], upscale=opt_net['scale']) elif which_model == 'RRDBNet': netG = RRDBNet_arch.RRDBNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'], nb=opt_net['nb']) elif which_model == 'MResNet': netG = SRResNet_arch.MResNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'], nf=opt_net['nf'], nb=opt_net['nb']) elif which_model == 'ResNet_alpha_beta': netG = SRResNet_arch.ResNet_alpha_beta() elif which_model == 'ResNet_alpha_beta_sconv': netG = SRResNet_arch.ResNet_alpha_beta_sconv() elif which_model == 'ResNet_alpha_beta_fc': netG = SRResNet_arch.ResNet_alpha_beta_fc() elif which_model == 'ResNet_alpha_beta_fc_statistics': netG = SRResNet_arch.ResNet_alpha_beta_fc_statistics() elif which_model == 'ResNet_alpha_beta_decoder_1x1': netG = SRResNet_arch.ResNet_alpha_beta_decoder_1x1() elif which_model == 'ResNet_alpha_beta_decoder_3x3': netG = SRResNet_arch.ResNet_alpha_beta_decoder_3x3() elif which_model == 'ResNet_alpha_beta_decoder_3x3_BN': netG = SRResNet_arch.ResNet_alpha_beta_decoder_3x3_BN() elif which_model == 'ResNet_alpha_beta_decoder_3x3_IN': netG = SRResNet_arch.ResNet_alpha_beta_decoder_3x3_IN() elif which_model == 'ResNet_alpha_beta_decoder_3x3_IN_encoder': netG = SRResNet_arch.ResNet_alpha_beta_decoder_3x3_IN_encoder() elif which_model == 'ResNet_alpha_beta_decoder_3x3_IN_encoder_8HW': netG = SRResNet_arch.ResNet_alpha_beta_decoder_3x3_IN_encoder_8HW() elif which_model == 'ResNet_alpha_beta_decoder_3x3_IN_encoder_global2local': netG = SRResNet_arch.ResNet_alpha_beta_decoder_3x3_IN_encoder_global2local( ) elif which_model == 'ResNet_plain': netG = SRResNet_arch.ResNet_plain() elif which_model == 'DFN': netG = DynamicF.DFN_16L_2d() elif which_model == 'DFN_1x1': netG = DynamicF.DFN_16L_2d_1x1() elif which_model == 'DFN_noRx': netG = DynamicF.DFN_16L_2d(res=False) elif which_model == 'DFN_alpha': netG = DynamicF.DFN_16L_2d_alpha() elif which_model == 'DCCN': netG = DynamicF.DCCN_16L_2d() elif which_model == 'DCCN_alpha': netG = DynamicF.DCCN_16L_2d_alpha() # elif which_model == 'sft_arch': # SFT-GAN # netG = sft_arch.SFT_Net() else: raise NotImplementedError( 'Generator model [{:s}] not recognized'.format(which_model)) return netG