Exemple #1
0
    def __init__(self, opt):
        super(RRSNetModel, self).__init__(opt)
        if opt['dist']:
            self.rank = torch.distributed.get_rank()
        else:
            self.rank = -1  # non dist training
        train_opt = opt['train']
        self.l1_init = train_opt['l1_init'] if train_opt['l1_init'] else 0

        # define networks and load pretrained models
        self.netG = networks.define_G(opt).to(self.device)
        if opt['dist']:
            self.netG = DistributedDataParallel(self.netG, device_ids=[torch.cuda.current_device()],find_unused_parameters=True)
        else:
            self.netG = DataParallel(self.netG)
        if self.is_train:
            self.netD = networks.define_D(opt).to(self.device)
            self.netD_grad = networks.define_D_grad(opt).to(self.device) # D_grad
            if opt['dist']:
                self.netD = DistributedDataParallel(self.netD,
                                                    device_ids=[torch.cuda.current_device()],find_unused_parameters=True)
                self.netD_grad = DistributedDataParallel(self.netD_grad,
                                                    device_ids=[torch.cuda.current_device()],find_unused_parameters=True)
            else:
                self.netD = DataParallel(self.netD)
                self.netD_grad = DataParallel(self.netD_grad)

            self.netG.train()
            self.netD.train()
            self.netD_grad.train()
        self.load()  # load G and D if needed

        # define losses, optimizer and scheduler
        if self.is_train:
            # G pixel loss
            if train_opt['pixel_weight'] > 0:
                l_pix_type = train_opt['pixel_criterion']
                if l_pix_type == 'l1':
                    self.cri_pix = nn.L1Loss().to(self.device)
                elif l_pix_type == 'l2':
                    self.cri_pix = nn.MSELoss().to(self.device)
                else:
                    raise NotImplementedError('Loss type [{:s}] not recognized.'.format(l_pix_type))
                self.l_pix_w = train_opt['pixel_weight']
            else:
                logger.info('Remove pixel loss.')
                self.cri_pix = None

            # G feature loss
            if train_opt['feature_weight'] > 0:
                l_fea_type = train_opt['feature_criterion']
                if l_fea_type == 'l1':
                    self.cri_fea = nn.L1Loss().to(self.device)
                elif l_fea_type == 'l2':
                    self.cri_fea = nn.MSELoss().to(self.device)
                else:
                    raise NotImplementedError('Loss type [{:s}] not recognized.'.format(l_fea_type))
                self.l_fea_w = train_opt['feature_weight']
            else:
                logger.info('Remove feature loss.')
                self.cri_fea = None
            if self.cri_fea:  # load VGG perceptual loss
                self.netF = networks.define_F(opt, use_bn=False).to(self.device)
                if opt['dist']:
                    pass  # do not need to use DistributedDataParallel for netF
                else:
                    self.netF = DataParallel(self.netF)

            # GD gan loss
            self.cri_gan = GANLoss(train_opt['gan_type'], 1.0, 0.0).to(self.device)
            self.l_gan_w = train_opt['gan_weight']
            # D_update_ratio and D_init_iters
            self.D_update_ratio = train_opt['D_update_ratio'] if train_opt['D_update_ratio'] else 1
            self.D_init_iters = train_opt['D_init_iters'] if train_opt['D_init_iters'] else 0
            # Branch_init_iters
            self.Branch_pretrain = train_opt['Branch_pretrain'] if train_opt['Branch_pretrain'] else 0
            self.Branch_init_iters = train_opt['Branch_init_iters'] if train_opt['Branch_init_iters'] else 1

            # gradient_pixel_loss
            if train_opt['gradient_pixel_weight'] > 0:
                self.cri_pix_grad = nn.MSELoss().to(self.device)
                self.l_pix_grad_w = train_opt['gradient_pixel_weight']
            else:
                self.cri_pix_grad = None

            # gradient_gan_loss
            if train_opt['gradient_gan_weight'] > 0:
                self.cri_grad_gan = GANLoss(train_opt['gan_type'], 1.0, 0.0).to(self.device)
                self.l_gan_grad_w = train_opt['gradient_gan_weight']
            else:
                self.cri_grad_gan = None


            # optimizers
            # G
            wd_G = train_opt['weight_decay_G'] if train_opt['weight_decay_G'] else 0
            optim_params = []
            for k, v in self.netG.named_parameters():  # can optimize for a part of the model
                if v.requires_grad:
                    optim_params.append(v)
                else:
                    if self.rank <= 0:
                        logger.warning('Params [{:s}] will not optimize.'.format(k))
            self.optimizer_G = torch.optim.Adam(optim_params, lr=train_opt['lr_G'],
                                                weight_decay=wd_G,
                                                betas=(train_opt['beta1_G'], train_opt['beta2_G']))
            self.optimizers.append(self.optimizer_G)
            # D
            wd_D = train_opt['weight_decay_D'] if train_opt['weight_decay_D'] else 0
            self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=train_opt['lr_D'],
                                                weight_decay=wd_D,
                                                betas=(train_opt['beta1_D'], train_opt['beta2_D']))
            self.optimizers.append(self.optimizer_D)

            # D_grad
            wd_D_grad = train_opt['weight_decay_D'] if train_opt['weight_decay_D'] else 0
            self.optimizer_D_grad = torch.optim.Adam(self.netD_grad.parameters(), lr=train_opt['lr_D'], \
                weight_decay=wd_D, betas=(train_opt['beta1_D'], 0.999))

            self.optimizers.append(self.optimizer_D_grad)

            # schedulers
            if train_opt['lr_scheme'] == 'MultiStepLR':
                for optimizer in self.optimizers:
                    self.schedulers.append(
                        lr_scheduler.MultiStepLR_Restart(optimizer, train_opt['lr_steps'],
                                                         restarts=train_opt['restarts'],
                                                         weights=train_opt['restart_weights'],
                                                         gamma=train_opt['lr_gamma'],
                                                         clear_state=train_opt['clear_state']))
            elif train_opt['lr_scheme'] == 'CosineAnnealingLR_Restart':
                for optimizer in self.optimizers:
                    self.schedulers.append(
                        lr_scheduler.CosineAnnealingLR_Restart(
                            optimizer, train_opt['T_period'], eta_min=train_opt['eta_min'],
                            restarts=train_opt['restarts'], weights=train_opt['restart_weights']))
            else:
                raise NotImplementedError('MultiStepLR learning rate scheme is enough.')

            self.log_dict = OrderedDict()
            self.get_grad = Get_gradient()
            self.get_grad_nopadding = Get_gradient_nopadding()

        self.print_network()  # print network
Exemple #2
0
    def __init__(self, opt):
        super(SPSRModel, self).__init__(opt)
        train_opt = opt['train']

        # define networks and load pretrained models
        self.netG = networks.define_G(opt).to(self.device)  # G
        if self.is_train:
            self.netD = networks.define_D(opt).to(self.device)  # D
            self.netD_grad = networks.define_D_grad(opt).to(self.device)  # D_grad
            self.netG.train()
            self.netD.train()
            self.netD_grad.train()
        self.load()  # load G and D if needed

        # define losses, optimizer and scheduler
        if self.is_train:
            # G pixel loss
            if train_opt['pixel_weight'] > 0:
                l_pix_type = train_opt['pixel_criterion']
                if l_pix_type == 'l1':
                    self.cri_pix = nn.L1Loss().to(self.device)
                elif l_pix_type == 'l2':
                    self.cri_pix = nn.MSELoss().to(self.device)
                else:
                    raise NotImplementedError('Loss type [{:s}] not recognized.'.format(l_pix_type))
                self.l_pix_w = train_opt['pixel_weight']
            else:
                logger.info('Remove pixel loss.')
                self.cri_pix = None

            # G feature loss
            if train_opt['feature_weight'] > 0:
                l_fea_type = train_opt['feature_criterion']
                if l_fea_type == 'l1':
                    self.cri_fea = nn.L1Loss().to(self.device)
                elif l_fea_type == 'l2':
                    self.cri_fea = nn.MSELoss().to(self.device)
                else:
                    raise NotImplementedError('Loss type [{:s}] not recognized.'.format(l_fea_type))
                self.l_fea_w = train_opt['feature_weight']
            else:
                logger.info('Remove feature loss.')
                self.cri_fea = None
            if self.cri_fea:  # load VGG perceptual loss
                self.netF = networks.define_F(opt, use_bn=False).to(self.device)

            # GD gan loss
            self.cri_gan = GANLoss(train_opt['gan_type'], 1.0, 0.0).to(self.device)
            self.l_gan_w = train_opt['gan_weight']
            # D_update_ratio and D_init_iters are for WGAN
            self.D_update_ratio = train_opt['D_update_ratio'] if train_opt['D_update_ratio'] else 1
            self.D_init_iters = train_opt['D_init_iters'] if train_opt['D_init_iters'] else 0
            # Branch_init_iters
            self.Branch_pretrain = train_opt['Branch_pretrain'] if train_opt['Branch_pretrain'] else 0
            self.Branch_init_iters = train_opt['Branch_init_iters'] if train_opt['Branch_init_iters'] else 1

            if train_opt['gan_type'] == 'wgan-gp':
                self.random_pt = torch.Tensor(1, 1, 1, 1).to(self.device)
                # gradient penalty loss
                self.cri_gp = GradientPenaltyLoss(device=self.device).to(self.device)
                self.l_gp_w = train_opt['gp_weigth']

            # gradient_pixel_loss
            if train_opt['gradient_pixel_weight'] > 0:
                self.cri_pix_grad = nn.MSELoss().to(self.device)
                self.l_pix_grad_w = train_opt['gradient_pixel_weight']
            else:
                self.cri_pix_grad = None

            # gradient_gan_loss
            if train_opt['gradient_gan_weight'] > 0:
                self.cri_grad_gan = GANLoss(train_opt['gan_type'], 1.0, 0.0).to(self.device)
                self.l_gan_grad_w = train_opt['gradient_gan_weight']
            else:
                self.cri_grad_gan = None

            # G_grad pixel loss
            if train_opt['pixel_branch_weight'] > 0:
                l_pix_type = train_opt['pixel_branch_criterion']
                if l_pix_type == 'l1':
                    self.cri_pix_branch = nn.L1Loss().to(self.device)
                elif l_pix_type == 'l2':
                    self.cri_pix_branch = nn.MSELoss().to(self.device)
                else:
                    raise NotImplementedError('Loss type [{:s}] not recognized.'.format(l_pix_type))
                self.l_pix_branch_w = train_opt['pixel_branch_weight']
            else:
                logger.info('Remove G_grad pixel loss.')
                self.cri_pix_branch = None

            # optimizers
            # G
            wd_G = train_opt['weight_decay_G'] if train_opt['weight_decay_G'] else 0

            optim_params = []
            for k, v in self.netG.named_parameters():  # optimize part of the model

                if v.requires_grad:
                    optim_params.append(v)
                else:
                    logger.warning('Params [{:s}] will not optimize.'.format(k))
            self.optimizer_G = torch.optim.Adam(optim_params, lr=train_opt['lr_G'], \
                                                weight_decay=wd_G, betas=(train_opt['beta1_G'], 0.999))
            self.optimizers.append(self.optimizer_G)

            # D
            wd_D = train_opt['weight_decay_D'] if train_opt['weight_decay_D'] else 0
            self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=train_opt['lr_D'], \
                                                weight_decay=wd_D, betas=(train_opt['beta1_D'], 0.999))

            self.optimizers.append(self.optimizer_D)

            # D_grad
            wd_D_grad = train_opt['weight_decay_D'] if train_opt['weight_decay_D'] else 0
            self.optimizer_D_grad = torch.optim.Adam(self.netD_grad.parameters(), lr=train_opt['lr_D'], \
                                                     weight_decay=wd_D, betas=(train_opt['beta1_D'], 0.999))

            self.optimizers.append(self.optimizer_D_grad)

            # schedulers
            if train_opt['lr_scheme'] == 'MultiStepLR':
                for optimizer in self.optimizers:
                    self.schedulers.append(lr_scheduler.MultiStepLR(optimizer, \
                                                                    train_opt['lr_steps'], train_opt['lr_gamma']))
            else:
                raise NotImplementedError('MultiStepLR learning rate scheme is enough.')

            self.log_dict = OrderedDict()
            self.get_grad = Get_gradient()
            self.get_grad_nopadding = Get_gradient_nopadding()