def init_mpnn(self, params): learn_args = [] learn_modules = [] args = {} # i learn_modules.append(NNet(n_in=2*params['in'], n_out=params['target'])) # j learn_modules.append(NNet(n_in=params['in'], n_out=params['target'])) args['out'] = params['target'] return nn.ParameterList(learn_args), nn.ModuleList(learn_modules), args
def init_intnet(self, params): learn_args = [] learn_modules = [] args = {} learn_modules.append(NNet(n_in=params['in'], n_out=params['target'])) return nn.ParameterList(learn_args), nn.ModuleList(learn_modules), args
def init_mpnn(self, params): learn_args = [] learn_modules = [] args = {} args['in'] = params['in'] args['out'] = params['out'] # Define a parameter matrix A for each edge label. learn_modules.append( NNet(n_in=params['edge_feat'], n_out=(params['in'] * params['out']))) return nn.ParameterList(learn_args), nn.ModuleList(learn_modules), args
def init_duvenaud(self, params): learn_args = [] learn_modules = [] args = {} args['out'] = params['out'] # Define a parameter matrix W for each layer. for l in range(params['layers']): learn_args.append(nn.Parameter(torch.randn(params['in'][l], params['out']))) # learn_modules.append(nn.Linear(params['out'], params['target'])) learn_modules.append(NNet(n_in=params['out'], n_out=params['target'])) return nn.ParameterList(learn_args), nn.ModuleList(learn_modules), args
def test_net(model_name, model_file, trained_with_residuals, trained_with_out_layer, image_file, channel): assert model_name in VALID_MODELS, 'Please choose a valid model: {}'.format( ', '.join(VALID_MODELS)) assert os.path.exists(model_file), 'No such file {}'.format(model_file) assert os.path.exists(image_file), 'No such file {}'.format(image_file) channel = int(channel) assert channel in list(range(len( CHANNELS))), 'Please choose a valid channel: {}'.format(CHANNELS_DICT) model = NNet(out_channels=5, use_residuals=trained_with_residuals, model_name=model_name, out_layer=trained_with_out_layer) model.load_state_dict(torch.load(model_file, map_location='cpu')) model.eval() pilim = Image.open(image_file).convert('L').convert('RGB') pilim.thumbnail((512, pilim.size[1]), Image.ANTIALIAS) new_h = pilim.size[1] - pilim.size[1] % 32 pilim = pilim.resize((512, new_h), Image.ANTIALIAS) pilim.show() correct_input_array = prepare_for_input(pilim) lr_flipped_input_array = prepare_for_input(pilim, flip_lr=True) if trained_with_out_layer: _, output = model(get_tensor(correct_input_array)) correct_out_image_array = get_output(output) _, output = model(get_tensor(lr_flipped_input_array)) lr_out_image_array = np.fliplr(get_output(output)) else: correct_out_image_array = get_output( model(get_tensor(correct_input_array))) lr_out_image_array = np.fliplr( get_output(model(get_tensor(lr_flipped_input_array)))) out_image_array = (correct_out_image_array + lr_out_image_array) / 2 out_image_array[out_image_array > 0.5] = 1 out_image_array[out_image_array <= 0.5] = 0 out_image_array *= 255 out_image_array = np.array(out_image_array, dtype='uint8') out_pilim = Image.fromarray(out_image_array[:, :, channel]) out_pilim.show()
def train(model_name, n_epochs, use_residuals, learning_rate, optimizer_name, validation_split, random_seed, momentum, batch_size, betas, eps, prefix=None, pretrained_encoder=None, save_train=False, save_test=False, out_layer=False, save_pretrained_encoder=False, dataset='coco'): assert prefix is not None, 'Please specify a prefix for the saved model files' ds = None if dataset == 'fred': ds = FREDDataset(images_dir='/mnt/frednet/images', masks_dir='/mnt/frednet/concatenated') elif dataset == 'coco': ds = COCODatasetEncoderPretrain(images_dir='./coco') assert ds is not None, 'No valid dataset was chosen' if pretrained_encoder is not None: assert os.path.exists(pretrained_encoder), 'No such file {}'.format(pretrained_encoder) dataset_size = len(ds) indices = list(range(dataset_size)) split = int(np.floor(validation_split * dataset_size)) np.random.seed(random_seed) np.random.shuffle(indices) train_indices, test_indices = indices[split:], indices[:split] train_sampler = SubsetRandomSampler(train_indices) test_sampler = SubsetRandomSampler(test_indices) train_loader = DataLoader(ds, batch_size=batch_size, num_workers=4, sampler=train_sampler) test_loader = DataLoader(ds, batch_size=batch_size, num_workers=4, sampler=test_sampler) model_parameters = { 'model_name': model_name, 'use_residuals': use_residuals, 'pretrained_encoder': pretrained_encoder, 'learning_rate': learning_rate, 'optimizer_name': optimizer_name, 'momentum': momentum, 'batch_size': batch_size, 'betas': betas, 'eps': eps, } if not os.path.exists(os.path.join(os.getcwd(), 'runs')): os.mkdir('runs') now = datetime.now() current_time = now.strftime('%d-%m-%Y_%H:%M:%S') with open(os.path.join('./runs', model_name + '_' + current_time + '.json'), 'w') as f: json.dump(model_parameters, indent=2, fp=f) model = NNet(out_channels=5, use_residuals=use_residuals, model_name=model_name, out_layer=out_layer) assert model is not None, 'Failed to load model' if pretrained_encoder is not None: model.encoder.load_state_dict(torch.load(pretrained_encoder, map_location=device)) for param in model.encoder.parameters(): param.requires_grad = False print('[INFO] Using pretrained encoder: {}'.format(pretrained_encoder)) print(model) model = model.to(device) optimizer = None if 'adam' in optimizer_name: optimizer = optim.Adam(model.parameters(), lr=learning_rate, eps=eps, betas=betas) if 'sgd' in optimizer_name: optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum) criterion = nn.BCELoss() n_steps = len(train_loader) print("[INFO] Starting training model {} \n\toptimizer {}\n\tlearning rate {}\n\tbatch size {}".format( model_name, optimizer_name, learning_rate, batch_size)) best_val_network_loss = 99999.0 best_val_outlayer_loss = 9999.0 epochs_not_improved = 0 training_network = True model.train() if out_layer: model.out_layer.eval() for epoch in range(n_epochs): epoch_network_loss = 0.0 epoch_loss = 0.0 epoch_out_layer_loss = 0.0 train_outputs = None test_outputs = None # Start training epoch for i, batch_data in enumerate(train_loader): images = Variable(batch_data['img']).to(device) labels = Variable(batch_data['mask']).to(device) if out_layer: # If we use outlayer, we compute the losses individually on the network and layer outputs_layer, outputs_network = model(images) loss_network = criterion(outputs_network, labels) loss_layer = criterion(outputs_layer, labels) epoch_out_layer_loss += loss_layer.item() epoch_network_loss += loss_network.item() optimizer.zero_grad() loss_network.backward() loss_layer.backward() optimizer.step() print( 'Epoch: {}/{}, Step: {}/{}, Loss network: {}, Loss layer {}'.format(epoch + 1, n_epochs, i + 1, n_steps, loss_network.item(), loss_layer.item())) sys.stdout.flush() else: # Otherwise we just compute the forward pass normally outputs = model(images) train_outputs = outputs loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() epoch_loss += loss.item() print('Epoch: {}/{}, Step: {}/{}, Loss: {}'.format(epoch + 1, n_epochs, i + 1, n_steps, loss.item())) sys.stdout.flush() del images del labels val_loss = 0.0 val_network_loss = 0.0 val_layer_loss = 0.0 model.eval() with torch.no_grad(): for idx, batch_data in enumerate(test_loader): images = Variable(batch_data['img']).to(device) labels = Variable(batch_data['mask']).to(device) if out_layer: # We compute the loss individually in validation outputs_layer, outputs_network = model(images) loss_train = criterion(outputs_network, labels) loss_layer = criterion(outputs_network, labels) val_network_loss += loss_train.item() val_layer_loss += loss_layer.item() else: outputs = model(images) test_outputs = outputs loss = criterion(outputs.view(-1), labels.view(-1)) val_loss += loss.item() if out_layer: print( 'Epoch train network loss {}, Epoch train out layer loss {}, Epoch test network loss {}, Epoch test out layer loss {}'.format( epoch_network_loss / len(train_loader), epoch_out_layer_loss / len(train_loader), val_network_loss / len(test_loader), val_layer_loss / len(test_loader))) else: print('Epoch train loss: {}, Epoch test loss: {}'.format( epoch_loss / len(train_loader), val_loss / len(test_loader))) # Save best model with the lowest encoder decoder loss if val_network_loss / len(test_loader) < best_val_network_loss: best_val_network_loss = val_network_loss / len(test_loader) torch.save(model.state_dict(), '{}_model_best_{}_{}.pth'.format(prefix, model_name, epoch)) else: epochs_not_improved += 1 # Early stopping for the encoder decoder at 3 epochs not improved if epochs_not_improved > 3 and out_layer: training_network = False # Start training outlayer only after network is at a minimum if out_layer: if training_network: model.encoder.train() model.decoder.train() else: model.out_layer.train() else: model.train() # Save best model with the lowest outlayer loss if val_layer_loss / len(test_loader) < best_val_outlayer_loss: best_val_outlayer_loss = val_layer_loss / len(test_loader) torch.save(model.state_dict(), '{}_model_best_{}_{}.pth'.format(prefix, model_name, epoch)) sys.stdout.flush() torch.save(model.state_dict(), '{}_model_{}.pth'.format(prefix, model_name, epoch)) if save_pretrained_encoder: torch.save(model.encoder.state_dict(), '{}_encoder_{}_{}.pth'.format(prefix, model_name, epoch)) if save_train: with open('{}_train_outputs_{}_{}.pkl'.format(prefix, model_name, epoch), 'wb') as f: pickle.dump(train_outputs.detach().cpu().numpy(), file=f) if save_test: with open('{}_test_outputs_{}_{}.pkl'.format(prefix, model_name, epoch), 'wb') as f: pickle.dump(test_outputs.detach().cpu().numpy(), file=f)