Exemple #1
0
    def __init__(self, n_nodes, C_pp, C_p, C, reduction_p, reduction):
        """
        Args:
            n_nodes: # of intermediate n_nodes
            C_pp: C_out[k-2]
            C_p : C_out[k-1]
            C   : C_in[k] (current)
            reduction_p: flag for whether the previous cell is reduction cell or not
            reduction: flag for whether the current cell is reduction cell or not
        """
        super().__init__()
        self.reduction = reduction
        self.n_nodes = n_nodes

        # If previous cell is reduction cell, current input size does not match with
        # output size of cell[k-2]. So the output[k-2] should be reduced by preprocessing.
        if reduction_p:
            self.preproc0 = ops.FactorizedReduce(C_pp, C, affine=False)
        else:
            self.preproc0 = ops.Conv2dBlock(C_pp, C, 1, 1, 0, affine=False)
        self.preproc1 = ops.Conv2dBlock(C_p, C, 1, 1, 0, affine=False)

        # generate dag
        self.dag = nn.ModuleList()
        for i in range(self.n_nodes):
            self.dag.append(nn.ModuleList())
            for j in range(2 + i):  # include 2 input nodes
                # reduction should be used only for input node
                stride = 2 if reduction and j < 2 else 1
                op = ops.MixedOp(C, stride)
                self.dag[i].append(op)
    def __init__(self, n_big_nodes, cells, start_p, end_p, C):
        super().__init__()
        self.n_big_nodes = n_big_nodes
        self.preproc0 = ops.StdConv(C, C, 1, 1, 0, affine=False)
        self.preproc1 = ops.StdConv(C, C, 1, 1, 0, affine=False)

        self.DAG = nn.ModuleList()
        for i in range(self.n_big_nodes):
            self.DAG.append(nn.ModuleList())
            if i < 1:
                for _ in range(2 + i):
                    stride = 1
                    op = ops.MixedOp(C, stride)
                    self.DAG[i].append(op)
            else:
                for _ in range(3):
                    stride = 1
                    op = ops.MixedOp(C, stride)
                    self.DAG[i].append(op)
        
        for k in range(start_p, end_p):
            self.DAG.append(cells[k])
    def __init__(self, in_features, n_nodes):
        """
        Args:
            n_nodes: # of intermediate n_nodes
        """
        super().__init__()
        self.n_nodes = n_nodes
        self.in_features = in_features
        self.out_features = None

        # generate dag
        self.dag = nn.ModuleList()
        for i in range(self.n_nodes):
            self.dag.append(nn.ModuleList())
            op = ops.MixedOp(in_features)
            in_features = op.out_features
            self.dag[-1].append(op)
        self.out_features = in_features

        print(f"new cell(in={self.in_features}, out={self.out_features})")