Exemple #1
0
    def __call__(self, class_logits, box_regression):
        """
        Computes the loss for Faster R-CNN.
        This requires that the subsample method has been called beforehand.

        Arguments:
            class_logits (list[Tensor])
            box_regression (list[Tensor])

        Returns:
            classification_loss (Tensor)
            box_loss (Tensor)
        """
        loss_dict = {}

        if not hasattr(self, "_proposals"):
            raise RuntimeError("subsample needs to be called before")

        proposals = self._proposals
        labels = cat([proposal.get_field("labels") for proposal in proposals], dim=0)

        assert class_logits[0] is not None or box_regression[0] is not None, 'Fast R-CNN should keep 1 branch at least'

        if class_logits[0] is not None:
            class_logits = cat(class_logits, dim=0)
            classification_loss = F.cross_entropy(class_logits, labels)
            loss_dict["loss_classifier"] = classification_loss

        if box_regression[0] is not None:
            box_regression = cat(box_regression, dim=0)
            device = box_regression.device
            regression_targets = cat([proposal.get_field("regression_targets") for proposal in proposals], dim=0)

            # get indices that correspond to the regression targets for
            # the corresponding ground truth labels, to be used with
            # advanced indexing
            sampled_pos_inds_subset = torch.nonzero(labels > 0).squeeze(1)
            labels_pos = labels[sampled_pos_inds_subset]
            if self.cls_agnostic_bbox_reg:
                map_inds = torch.tensor([4, 5, 6, 7], device=device)
            else:
                map_inds = 4 * labels_pos[:, None] + torch.tensor([0, 1, 2, 3], device=device)

            box_loss = smooth_l1_loss(
                box_regression[sampled_pos_inds_subset[:, None], map_inds],
                regression_targets[sampled_pos_inds_subset],
                size_average=False,
                beta=cfg.FAST_RCNN.SMOOTH_L1_BETA,
            )
            box_loss = box_loss / labels.numel()
            loss_dict["loss_box_reg"] = box_loss
        return loss_dict
Exemple #2
0
    def __call__(self, anchors, objectness, box_regression, targets):
        """
        Arguments:
            anchors (list[BoxList])
            objectness (list[Tensor])
            box_regression (list[Tensor])
            targets (list[BoxList])

        Returns:
            objectness_loss (Tensor)
            box_loss (Tensor
        """
        anchors = [
            cat_boxlist(anchors_per_image) for anchors_per_image in anchors
        ]
        labels, regression_targets = self.prepare_targets(anchors, targets)
        sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
        sampled_pos_inds = torch.nonzero(torch.cat(sampled_pos_inds,
                                                   dim=0)).squeeze(1)
        sampled_neg_inds = torch.nonzero(torch.cat(sampled_neg_inds,
                                                   dim=0)).squeeze(1)

        sampled_inds = torch.cat([sampled_pos_inds, sampled_neg_inds], dim=0)

        objectness, box_regression = concat_box_prediction_layers(
            objectness, box_regression)

        objectness = objectness.squeeze()

        labels = torch.cat(labels, dim=0)
        regression_targets = torch.cat(regression_targets, dim=0)

        box_loss = smooth_l1_loss(
            box_regression[sampled_pos_inds],
            regression_targets[sampled_pos_inds],
            beta=cfg.RPN.SMOOTH_L1_BETA,
            size_average=False,
        ) / (sampled_inds.numel())

        objectness_loss = F.binary_cross_entropy_with_logits(
            objectness[sampled_inds], labels[sampled_inds])

        return objectness_loss, box_loss