def build_paddle_model():
    # * backbone
    backbone = 'resnet50'
    dilation = False
    position_embedding = 'sine'

    # * Transformer
    enc_layers = 6
    dec_layers = 6
    dim_feedforward = 2048
    hidden_dim = 256
    dropout = 0
    nheads = 8
    num_queries = 100
    pre_norm = False
    num_classes = 91

    position_embedding = PositionEmbeddingSine(hidden_dim // 2, normalize=True)
    backbone = Backbone(backbone, False, True, dilation)
    backbone = Joiner(backbone, position_embedding)
    backbone.num_channels = 2048
    transformer = Transformer(
        d_model=hidden_dim, dropout=dropout, nhead=nheads, dim_feedforward=dim_feedforward, 
        num_encoder_layers=enc_layers, num_decoder_layers=dec_layers, normalize_before=pre_norm, 
        return_intermediate_dec=True)
    model = DETR(backbone, transformer, num_classes=num_classes, num_queries=num_queries, aux_loss=True)
    
    return model
Exemple #2
0
def build_backbone():
    N_steps = 256 // 2
    position_embedding = PositionEmbeddingSine(N_steps, normalize=True)
    train_backbone = True
    return_interm_layers = False
    backbone = Backbone('resnet50', train_backbone, return_interm_layers,
                        False)
    model = Joiner(backbone, position_embedding)
    model.num_channels = backbone.num_channels
    return model
Exemple #3
0
def build_position_encoding(hidden_dim, position_embedding):
    N_steps = hidden_dim // 2
    if position_embedding in ('v2', 'sine'):
        # TODO find a better way of exposing other arguments
        position_embedding = PositionEmbeddingSine(N_steps, normalize=True)
    elif position_embedding in ('v3', 'learned'):
        position_embedding = PositionEmbeddingLearned(N_steps)
    else:
        raise ValueError(f"not supported {position_embedding}")
    return position_embedding
Exemple #4
0
def build_backbone():
    position_embedding = PositionEmbeddingSine(num_pos_feats=128,
                                               normalize=True)
    backbone = Backbone('resnet50',
                        train_backbone=True,
                        return_interm_layers=False,
                        dilation=False)
    model = Joiner(backbone, position_embedding)
    model.num_channels = backbone.num_channels
    return model
Exemple #5
0
def _make_detr(backbone_name: str, dilation=False, num_classes=91, mask=False):
    hidden_dim = 256
    backbone = Backbone(backbone_name, train_backbone=True, return_interm_layers=mask, dilation=dilation)
    pos_enc = PositionEmbeddingSine(hidden_dim // 2, normalize=True)
    backbone_with_pos_enc = Joiner(backbone, pos_enc)
    backbone_with_pos_enc.num_channels = backbone.num_channels
    transformer = Transformer(d_model=hidden_dim, return_intermediate_dec=True)
    detr = DETR(backbone_with_pos_enc, transformer, num_classes=num_classes, num_queries=100)
    if mask:
        return DETRsegm(detr)
    return detr
Exemple #6
0
def _make_backbone(backbone_name: str, mask: bool = False):
    if backbone_name[:len("timm_")] == "timm_":
        backbone = TimmBackbone(
            backbone_name[len("timm_"):],
            mask,
            main_layer=-1,
            group_norm=True,
        )
    else:
        backbone = Backbone(backbone_name,
                            train_backbone=True,
                            return_interm_layers=mask,
                            dilation=False)

    hidden_dim = 256
    pos_enc = PositionEmbeddingSine(hidden_dim // 2, normalize=True)
    backbone_with_pos_enc = Joiner(backbone, pos_enc)
    backbone_with_pos_enc.num_channels = backbone.num_channels
    return backbone_with_pos_enc
Exemple #7
0
 def test_position_encoding_script(self):
     m1, m2 = PositionEmbeddingSine(), PositionEmbeddingLearned()
     mm1, mm2 = torch.jit.script(m1), torch.jit.script(m2)  # noqa
Exemple #8
0
def build(args):
    # the `num_classes` naming here is somewhat misleading.
    # it indeed corresponds to `max_obj_id + 1`, where max_obj_id
    # is the maximum id for a class in your dataset. For example,
    # COCO has a max_obj_id of 90, so we pass `num_classes` to be 91.
    # As another example, for a dataset that has a single class with id 1,
    # you should pass `num_classes` to be 2 (max_obj_id + 1).
    # For more details on this, check the following discussion
    # https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223
    num_classes = 20 if args.dataset_file != 'coco' else 91
    if args.dataset_file == "coco_panoptic":
        # for panoptic, we just add a num_classes that is large enough to hold
        # max_obj_id + 1, but the exact value doesn't really matter
        num_classes = 250
    device = torch.device(args.device)

    if args.backbone == 'efficientnet-b0':
        efficientnet_py = EfficientNet.from_pretrained('efficientnet-b0')
        hidden_dim = 256
        backbone = efficientnet_py
        pos_enc = PositionEmbeddingSine(hidden_dim // 2, normalize=True)
        backbone_with_pos_enc = Joiner(backbone, pos_enc)
        #backbone_with_pos_enc.num_channels = backbone.num_channels
        backbone_with_pos_enc.num_channels = 2048
        transformer = Transformer(d_model=hidden_dim,
                                  return_intermediate_dec=True)
        model = DETR(backbone_with_pos_enc,
                     transformer,
                     num_classes=91,
                     num_queries=100)
    else:
        backbone = build_backbone(args)
        transformer = build_transformer(args)
        model = DETR(
            backbone,
            transformer,
            num_classes=num_classes,
            num_queries=args.num_queries,
            aux_loss=args.aux_loss,
        )
    if args.masks:
        model = DETRsegm(model, freeze_detr=(args.frozen_weights is not None))
    matcher = build_matcher(args)
    weight_dict = {'loss_ce': 1, 'loss_bbox': args.bbox_loss_coef}
    weight_dict['loss_giou'] = args.giou_loss_coef
    if args.masks:
        weight_dict["loss_mask"] = args.mask_loss_coef
        weight_dict["loss_dice"] = args.dice_loss_coef
    # TODO this is a hack
    if args.aux_loss:
        aux_weight_dict = {}
        for i in range(args.dec_layers - 1):
            aux_weight_dict.update(
                {k + f'_{i}': v
                 for k, v in weight_dict.items()})
        weight_dict.update(aux_weight_dict)

    losses = ['labels', 'boxes', 'cardinality']
    if args.masks:
        losses += ["masks"]
    criterion = SetCriterion(num_classes,
                             matcher=matcher,
                             weight_dict=weight_dict,
                             eos_coef=args.eos_coef,
                             losses=losses)
    criterion.to(device)
    postprocessors = {'bbox': PostProcess()}
    if args.masks:
        postprocessors['segm'] = PostProcessSegm()
        if args.dataset_file == "coco_panoptic":
            is_thing_map = {i: i <= 90 for i in range(201)}
            postprocessors["panoptic"] = PostProcessPanoptic(is_thing_map,
                                                             threshold=0.85)

    return model, criterion, postprocessors
Exemple #9
0
    def __init__(self, cfg):
        super().__init__()

        self.device = torch.device(cfg.MODEL.DEVICE)

        self.num_classes = cfg.MODEL.DETR.NUM_CLASSES
        hidden_dim = cfg.MODEL.DETR.HIDDEN_DIM
        num_queries = cfg.MODEL.DETR.NUM_OBJECT_QUERIES
        # Transformer parameters:
        nheads = cfg.MODEL.DETR.NHEADS
        dropout = cfg.MODEL.DETR.DROPOUT
        dim_feedforward = cfg.MODEL.DETR.DIM_FEEDFORWARD
        enc_layers = cfg.MODEL.DETR.ENC_LAYERS
        dec_layers = cfg.MODEL.DETR.DEC_LAYERS
        pre_norm = cfg.MODEL.DETR.PRE_NORM
        pass_pos_and_query = cfg.MODEL.DETR.PASS_POS_AND_QUERY

        # Loss parameters:
        giou_weight = cfg.MODEL.DETR.GIOU_WEIGHT
        l1_weight = cfg.MODEL.DETR.L1_WEIGHT
        deep_supervision = cfg.MODEL.DETR.DEEP_SUPERVISION
        no_object_weight = cfg.MODEL.DETR.NO_OBJECT_WEIGHT

        N_steps = hidden_dim // 2
        d2_backbone = MaskedBackbone(cfg)
        backbone = Joiner(d2_backbone,
                          PositionEmbeddingSine(N_steps, normalize=True))
        backbone.num_channels = d2_backbone.num_channels

        transformer = Transformer(
            d_model=hidden_dim,
            dropout=dropout,
            nhead=nheads,
            dim_feedforward=dim_feedforward,
            num_encoder_layers=enc_layers,
            num_decoder_layers=dec_layers,
            normalize_before=pre_norm,
            return_intermediate_dec=deep_supervision,
            pass_pos_and_query=pass_pos_and_query,
        )

        self.detr = DETR(backbone,
                         transformer,
                         num_classes=self.num_classes,
                         num_queries=num_queries,
                         aux_loss=deep_supervision)
        self.detr.to(self.device)

        # building criterion
        matcher = HungarianMatcher(cost_class=1,
                                   cost_bbox=l1_weight,
                                   cost_giou=giou_weight)
        weight_dict = {"loss_ce": 1, "loss_bbox": l1_weight}
        weight_dict["loss_giou"] = giou_weight
        if deep_supervision:
            aux_weight_dict = {}
            for i in range(dec_layers - 1):
                aux_weight_dict.update(
                    {k + f"_{i}": v
                     for k, v in weight_dict.items()})
            weight_dict.update(aux_weight_dict)
        losses = ["labels", "boxes", "cardinality"]
        self.criterion = SetCriterion(self.num_classes,
                                      matcher=matcher,
                                      weight_dict=weight_dict,
                                      eos_coef=no_object_weight,
                                      losses=losses)
        self.criterion.to(self.device)

        pixel_mean = torch.Tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(
            3, 1, 1)
        pixel_std = torch.Tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(
            3, 1, 1)
        self.normalizer = lambda x: (x - pixel_mean) / pixel_std
        self.to(self.device)
Exemple #10
0
    def __init__(self, cfg):
        super().__init__()

        self.device = torch.device(cfg.MODEL.DEVICE)

        self.num_classes = cfg.MODEL.DETR.NUM_CLASSES
        self.mask_on = cfg.MODEL.MASK_ON
        hidden_dim = cfg.MODEL.DETR.HIDDEN_DIM
        num_queries = cfg.MODEL.DETR.NUM_OBJECT_QUERIES
        # Transformer parameters:
        nheads = cfg.MODEL.DETR.NHEADS
        dropout = cfg.MODEL.DETR.DROPOUT
        dim_feedforward = cfg.MODEL.DETR.DIM_FEEDFORWARD
        enc_layers = cfg.MODEL.DETR.ENC_LAYERS
        dec_layers = cfg.MODEL.DETR.DEC_LAYERS
        pre_norm = cfg.MODEL.DETR.PRE_NORM

        # Loss parameters:
        giou_weight = cfg.MODEL.DETR.GIOU_WEIGHT
        l1_weight = cfg.MODEL.DETR.L1_WEIGHT
        deep_supervision = cfg.MODEL.DETR.DEEP_SUPERVISION
        no_object_weight = cfg.MODEL.DETR.NO_OBJECT_WEIGHT

        N_steps = hidden_dim // 2
        d2_backbone = MaskedBackbone(cfg)
        backbone = Joiner(d2_backbone,
                          PositionEmbeddingSine(N_steps, normalize=True))
        backbone.num_channels = d2_backbone.num_channels

        transformer = Transformer(
            d_model=hidden_dim,
            dropout=dropout,
            nhead=nheads,
            dim_feedforward=dim_feedforward,
            num_encoder_layers=enc_layers,
            num_decoder_layers=dec_layers,
            normalize_before=pre_norm,
            return_intermediate_dec=deep_supervision,
        )

        self.detr = DETR(backbone,
                         transformer,
                         num_classes=self.num_classes,
                         num_queries=num_queries,
                         aux_loss=deep_supervision)
        if self.mask_on:
            frozen_weights = cfg.MODEL.DETR.FROZEN_WEIGHTS
            if frozen_weights != '':
                print("LOAD pre-trained weights")
                weight = torch.load(
                    frozen_weights,
                    map_location=lambda storage, loc: storage)['model']
                new_weight = {}
                for k, v in weight.items():
                    if 'detr.' in k:
                        new_weight[k.replace('detr.', '')] = v
                    else:
                        print(f"Skipping loading weight {k} from frozen model")
                del weight
                self.detr.load_state_dict(new_weight)
                del new_weight
            self.detr = DETRsegm(self.detr, freeze_detr=(frozen_weights != ''))
            self.seg_postprocess = PostProcessSegm

        self.detr.to(self.device)

        # building criterion
        matcher = HungarianMatcher(cost_class=1,
                                   cost_bbox=l1_weight,
                                   cost_giou=giou_weight)
        weight_dict = {"loss_ce": 1, "loss_bbox": l1_weight}
        weight_dict["loss_giou"] = giou_weight
        if deep_supervision:
            aux_weight_dict = {}
            for i in range(dec_layers - 1):
                aux_weight_dict.update(
                    {k + f"_{i}": v
                     for k, v in weight_dict.items()})
            weight_dict.update(aux_weight_dict)
        losses = ["labels", "boxes", "cardinality"]
        if self.mask_on:
            losses += ["masks"]
        self.criterion = SetCriterion(
            self.num_classes,
            matcher=matcher,
            weight_dict=weight_dict,
            eos_coef=no_object_weight,
            losses=losses,
        )
        self.criterion.to(self.device)

        pixel_mean = torch.Tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(
            3, 1, 1)
        pixel_std = torch.Tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(
            3, 1, 1)
        self.normalizer = lambda x: (x - pixel_mean) / pixel_std
        self.to(self.device)
Exemple #11
0
    def __init__(self, args):
        super(my_DETR, self).__init__()

        N_steps = args.hidden_dim // 2
        if args.position_embedding in ('v2', 'sine'):
            # TODO find a better way of exposing other arguments
            position_embedding = PositionEmbeddingSine(N_steps, normalize=True)
        elif args.position_embedding in ('v3', 'learned'):
            position_embedding = PositionEmbeddingLearned(N_steps)
        else:
            raise ValueError(f"not supported {args.position_embedding}")
        train_backbone = args.lr_backbone > 0
        return_interm_layers = args.masks
        backbone = Backbone(args.backbone, train_backbone,
                            return_interm_layers, args.dilation)
        joiner = Joiner(backbone, position_embedding)
        joiner.num_channels = backbone.num_channels
        transformer = Transformer(
            d_model=args.hidden_dim,
            dropout=args.dropout,
            nhead=args.nheads,
            dim_feedforward=args.dim_feedforward,
            num_encoder_layers=args.enc_layers,
            num_decoder_layers=args.dec_layers,
            normalize_before=args.pre_norm,
            return_intermediate_dec=True,
        )
        num_classes = 20 if args.dataset_file != 'coco' else 91
        if args.dataset_file == "coco_panoptic":
            num_classes = 250
        matcher = build_matcher(args)
        weight_dict = {'loss_ce': 1, 'loss_bbox': args.bbox_loss_coef}
        weight_dict['loss_giou'] = args.giou_loss_coef
        # if args.masks:
        #     weight_dict["loss_mask"] = args.mask_loss_coef
        #     weight_dict["loss_dice"] = args.dice_loss_coef
        # TODO this is a hack
        if args.aux_loss:
            aux_weight_dict = {}
            for i in range(args.dec_layers - 1):
                aux_weight_dict.update(
                    {k + f'_{i}': v
                     for k, v in weight_dict.items()})
            weight_dict.update(aux_weight_dict)

        losses = ['labels', 'boxes', 'cardinality']
        if args.masks:
            losses += ["masks"]
        self.criterion = SetCriterion(num_classes,
                                      matcher=matcher,
                                      weight_dict=weight_dict,
                                      eos_coef=args.eos_coef,
                                      losses=losses)
        self.num_queries = args.num_queries
        self.transformer = transformer
        hidden_dim = transformer.d_model
        self.class_embed = nn.Linear(hidden_dim, num_classes + 1)
        self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
        self.query_embed = nn.Embedding(args.num_queries, hidden_dim)
        self.input_proj = nn.Conv2d(joiner.num_channels,
                                    hidden_dim,
                                    kernel_size=1)
        self.backbone = joiner
        self.aux_loss = args.aux_loss
Exemple #12
0
    def __init__(self,
                 body,
                 num_classes=90,
                 num_queries=100,
                 aux_loss=True,
                 num_channels=512,
                 hidden_dim=64,
                 dropout=.1,
                 nheads=8,
                 dim_feedforward=256,
                 enc_layers=2,
                 dec_layers=2,
                 pre_norm=False,
                 return_intermediate_dec=True,
                 position_embedding=None):

        backbone = Backbone(body=body)
        N_steps = hidden_dim // 2

        position_embedding = position_embedding if position_embedding is not None else PositionEmbeddingSine(
            N_steps, normalize=True)
        model = Joiner(backbone, position_embedding)
        model.num_channels = num_channels

        transformer = Transformer(
            d_model=hidden_dim,
            dropout=dropout,
            nhead=nheads,
            dim_feedforward=dim_feedforward,
            num_encoder_layers=enc_layers,
            num_decoder_layers=dec_layers,
            normalize_before=pre_norm,
            return_intermediate_dec=True,
        )

        super().__init__(model,
                         transformer,
                         num_classes=num_classes,
                         num_queries=num_queries,
                         aux_loss=aux_loss)