def get_config(is_train):
    class General:
        log_frequency = 10
        name = __name__.rsplit("/")[-1].rsplit(".")[-1]
        batch_image = 2 if is_train else 1
        fp16 = False

    class KvstoreParam:
        kvstore = "nccl"
        batch_image = General.batch_image
        gpus = [0, 1, 2, 3, 4, 5, 6, 7]
        fp16 = General.fp16

    class NormalizeParam:
        normalizer = normalizer_factory(type="fixbn")

    class BackboneParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer

    class NeckParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer

    class RpnParam:
        num_class = 1 + 80
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        batch_image = General.batch_image

        class anchor_generate:
            scale = (4 * 2**0, 4 * 2**(1.0 / 3.0), 4 * 2**(2.0 / 3.0))
            ratio = (0.5, 1.0, 2.0)
            stride = (8, 16, 32, 64, 128)
            image_anchor = None

        class head:
            conv_channel = 256
            mean = None
            std = None

        class proposal:
            pre_nms_top_n = 1000
            post_nms_top_n = None
            nms_thr = None
            min_bbox_side = None
            min_det_score = 0.05  # filter score in network

        class subsample_proposal:
            proposal_wo_gt = None
            image_roi = None
            fg_fraction = None
            fg_thr = None
            bg_thr_hi = None
            bg_thr_lo = None

        class bbox_target:
            num_reg_class = None
            class_agnostic = None
            weight = None
            mean = None
            std = None

        class focal_loss:
            alpha = 0.25
            gamma = 2.0

    class BboxParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        num_class = None
        image_roi = None
        batch_image = None

        class regress_target:
            class_agnostic = None
            mean = None
            std = None

    class RoiParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        out_size = None
        stride = None

    class DatasetParam:
        if is_train:
            image_set = ("coco_train2014", "coco_valminusminival2014")
        else:
            image_set = ("coco_minival2014", )

    backbone = Backbone(BackboneParam)
    neck = Neck(NeckParam)
    rpn_head = RpnHead(RpnParam)
    detector = Detector()
    if is_train:
        train_sym = detector.get_train_symbol(backbone, neck, rpn_head)
        test_sym = None
    else:
        train_sym = None
        test_sym = detector.get_test_symbol(backbone, neck, rpn_head)

    class ModelParam:
        train_symbol = train_sym
        test_symbol = test_sym

        from_scratch = False
        random = True
        memonger = False
        memonger_until = "stage3_unit21_plus"

        class pretrain:
            prefix = "pretrain_model/resnet-v1-101"
            epoch = 0
            fixed_param = ["conv0", "stage1", "gamma", "beta"]

    class OptimizeParam:
        class optimizer:
            type = "sgd"
            lr = 0.005 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image
            momentum = 0.9
            wd = 0.0001
            clip_gradient = None

        class schedule:
            begin_epoch = 0
            end_epoch = 6
            lr_iter = [
                60000 * 16 //
                (len(KvstoreParam.gpus) * KvstoreParam.batch_image), 80000 *
                16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image)
            ]

        class warmup:
            type = "gradual"
            lr = 0.005 / 8 * len(
                KvstoreParam.gpus) * KvstoreParam.batch_image / 3
            iter = 500

    class TestParam:
        min_det_score = 0  # filter appended boxes
        max_det_per_image = 100

        process_roidb = lambda x: x
        process_output = lambda x, y: x

        class model:
            prefix = "experiments/{}/checkpoint".format(General.name)
            epoch = OptimizeParam.schedule.end_epoch

        class nms:
            type = "nms"
            thr = 0.5

        class coco:
            annotation = "data/coco/annotations/instances_minival2014.json"

    # data processing
    class NormParam:
        mean = (122.7717, 115.9465, 102.9801)  # RGB order
        std = (1.0, 1.0, 1.0)

    class ResizeParam:
        short = 800
        long = 1333

    class PadParam:
        short = 800
        long = 1333
        max_num_gt = 100

    class AnchorTarget2DParam:
        def __init__(self):
            self.generate = self._generate()

        class _generate:
            def __init__(self):
                self.short = (100, 50, 25, 13, 7)
                self.long = (167, 84, 42, 21, 11)
                self.stride = (8, 16, 32, 64, 128)

            scales = (4 * 2**0, 4 * 2**(1.0 / 3.0), 4 * 2**(2.0 / 3.0))
            aspects = (0.5, 1.0, 2.0)

        class assign:
            allowed_border = 9999
            pos_thr = 0.5
            neg_thr = 0.4
            min_pos_thr = 0.0

        class sample:
            image_anchor = None
            pos_fraction = None

    class RenameParam:
        mapping = dict(image="data")


    from core.detection_input import ReadRoiRecord, Resize2DImageBbox, \
        ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \
        RenameRecord
    from models.retinanet.input import PyramidAnchorTarget2D, Norm2DImage

    if is_train:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            Resize2DImageBbox(ResizeParam),
            Flip2DImageBbox(),
            Pad2DImageBbox(PadParam),
            ConvertImageFromHwcToChw(),
            PyramidAnchorTarget2D(AnchorTarget2DParam()),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data"]
        label_name = ["rpn_cls_label", "rpn_reg_target", "rpn_reg_weight"]
    else:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            Resize2DImageBbox(ResizeParam),
            ConvertImageFromHwcToChw(),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data", "im_info", "im_id", "rec_id"]
        label_name = []

    from models.retinanet import metric

    rpn_acc_metric = metric.FGAccMetric("FGAcc", ["cls_loss_output"],
                                        ["rpn_cls_label"])

    metric_list = [rpn_acc_metric]

    return General, KvstoreParam, RpnParam, RoiParam, BboxParam, DatasetParam, \
           ModelParam, OptimizeParam, TestParam, \
           transform, data_name, label_name, metric_list
def get_config(is_train):
    class General:
        log_frequency = 10
        name = __name__.rsplit("/")[-1].rsplit(".")[-1]
        batch_image = 2 if is_train else 1
        fp16 = False

    class KvstoreParam:
        kvstore = "nccl"
        batch_image = General.batch_image
        gpus = [0, 1, 2, 3, 4, 5, 6, 7]
        fp16 = General.fp16

    class NormalizeParam:
        # normalizer = normalizer_factory(type="syncbn", ndev=8, wd_mult=1.0)
        normalizer = normalizer_factory(type="gn")

    class BackboneParam:
        fp16 = General.fp16
        # normalizer = NormalizeParam.normalizer
        normalizer = normalizer_factory(type="fixbn")

    class NeckParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer

    class HeadParam:
        num_class = 1 + 80
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        batch_image = General.batch_image

        class point_generate:
            num_points = 9
            scale = 4
            stride = (8, 16, 32, 64, 128)
            # transform = "minmax"
            transform = "moment"

        class head:
            conv_channel = 256
            point_conv_channel = 256
            mean = None
            std = None

        class proposal:
            pre_nms_top_n = 1000
            post_nms_top_n = None
            nms_thr = None
            min_bbox_side = None

        class point_target:
            target_scale = 4
            num_pos = 1

        class bbox_target:
            pos_iou_thr = 0.5
            neg_iou_thr = 0.5
            min_pos_iou = 0.0

        class focal_loss:
            alpha = 0.25
            gamma = 2.0

    class BboxParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        num_class = None
        image_roi = None
        batch_image = None

        class regress_target:
            class_agnostic = None
            mean = None
            std = None

    class RoiParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        out_size = None
        stride = None

    class DatasetParam:
        if is_train:
            image_set = ("coco_train2017", )
        else:
            image_set = ("coco_val2017", )

    backbone = Backbone(BackboneParam)
    neck = Neck(NeckParam)
    head = Head(HeadParam)
    detector = Detector()
    if is_train:
        train_sym = detector.get_train_symbol(backbone, neck, head)
        test_sym = None
    else:
        train_sym = None
        test_sym = detector.get_test_symbol(backbone, neck, head)

    class ModelParam:
        train_symbol = train_sym
        test_symbol = test_sym

        from_scratch = False
        random = True
        memonger = False
        memonger_until = "stage3_unit21_plus"

        class pretrain:
            prefix = "pretrain_model/resnet-v1-50"
            epoch = 0
            fixed_param = ["conv0", "stage1", "gamma", "beta"]
            excluded_param = ["gn"]

    class OptimizeParam:
        class optimizer:
            type = "sgd"
            lr = 0.005 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image
            momentum = 0.9
            wd = 0.0001
            clip_gradient = None

        class schedule:
            begin_epoch = 0
            end_epoch = 6
            lr_iter = [
                60000 * 16 //
                (len(KvstoreParam.gpus) * KvstoreParam.batch_image), 80000 *
                16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image)
            ]

        class warmup:
            type = "gradual"
            lr = 0.005 / 8 * len(
                KvstoreParam.gpus) * KvstoreParam.batch_image / 3
            iter = 500

    class TestParam:
        min_det_score = 0.05  # filter appended boxes
        max_det_per_image = 100

        def process_roidb(x):
            return x

        def process_output(x, y):
            return x

        class model:
            prefix = "experiments/{}/checkpoint".format(General.name)
            epoch = OptimizeParam.schedule.end_epoch

        class nms:
            type = "nms"
            thr = 0.5

        class coco:
            annotation = "data/coco/annotations/instances_minival2014.json"

    # data processing
    class NormParam:
        mean = (122.7717, 115.9465, 102.9801)  # RGB order
        std = (1.0, 1.0, 1.0)

    class ResizeParam:
        short = 800
        long = 1333

    class PadParam:
        short = 800
        long = 1333
        max_num_gt = 100

    class RenameParam:
        mapping = dict(image="data")

    from core.detection_input import ReadRoiRecord, Resize2DImageBbox, \
        ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \
        RenameRecord
    from models.retinanet.input import Norm2DImage

    if is_train:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            Resize2DImageBbox(ResizeParam),
            Flip2DImageBbox(),
            Pad2DImageBbox(PadParam),
            ConvertImageFromHwcToChw(),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data"]
        label_name = ["gt_bbox"]
    else:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            Resize2DImageBbox(ResizeParam),
            Pad2DImageBbox(PadParam),
            ConvertImageFromHwcToChw(),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data", "im_info", "im_id", "rec_id"]
        label_name = []

    from models.retinanet import metric as cls_metric
    import core.detection_metric as box_metric

    cls_acc_metric = cls_metric.FGAccMetric(
        "FGAcc", ["cls_loss_output", "point_refine_labels_output"], [])
    box_init_l1_metric = box_metric.L1(
        "InitL1", ["pts_init_loss_output", "points_init_labels_output"], [])
    box_refine_l1_metric = box_metric.L1(
        "RefineL1", ["pts_refine_loss_output", "point_refine_labels_output"],
        [])

    metric_list = [cls_acc_metric, box_init_l1_metric, box_refine_l1_metric]

    return General, KvstoreParam, HeadParam, RoiParam, BboxParam, DatasetParam, \
        ModelParam, OptimizeParam, TestParam, \
        transform, data_name, label_name, metric_list
Exemple #3
0
def get_config(is_train):
    class General:
        log_frequency = 10
        name = __name__.rsplit("/")[-1].rsplit(".")[-1]
        batch_image = 3 if is_train else 1
        fp16 = True

    class KvstoreParam:
        kvstore = "local"
        batch_image = General.batch_image
        gpus = [0, 1, 2, 3, 4, 5, 6, 7]
        fp16 = General.fp16

    class NormalizeParam:
        normalizer = normalizer_factory(type="syncbn", ndev=8, wd_mult=1.0)

    class BackboneParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        depth = 50

    class NeckParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        dim_reduced = 384
        num_stage = 3
        S0_kernel = 1

    class RpnParam:
        num_class = 1 + 80
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        batch_image = General.batch_image
        sync_loss = True

        class anchor_generate:
            scale = (4 * 2**0, 4 * 2**(1.0 / 3.0), 4 * 2**(2.0 / 3.0))
            ratio = (0.5, 1.0, 2.0)
            stride = (8, 16, 32, 64, 128)
            image_anchor = None

        class head:
            conv_channel = 256
            mean = None
            std = None

        class proposal:
            pre_nms_top_n = 1000
            post_nms_top_n = None
            nms_thr = None
            min_bbox_side = None
            min_det_score = 0.05  # filter score in network

        class focal_loss:
            alpha = 0.25
            gamma = 2.0

    class BboxParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        num_class = None
        image_roi = None
        batch_image = None

    class RoiParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        out_size = None
        stride = None

    class DatasetParam:
        if is_train:
            image_set = ("coco_train2017", "coco_val2017")
        else:
            image_set = ("coco_test-dev2017", )

    backbone = Backbone(BackboneParam)
    neck = Neck(NeckParam)
    rpn_head = RpnHead(RpnParam)
    detector = Detector()
    if is_train:
        train_sym = detector.get_train_symbol(backbone, neck, rpn_head)
        test_sym = None
    else:
        train_sym = None
        test_sym = detector.get_test_symbol(backbone, neck, rpn_head)

    class ModelParam:
        train_symbol = train_sym
        test_symbol = test_sym

        from_scratch = False
        random = True
        memonger = False
        memonger_until = "stage4_unit3_relu"

        class pretrain:
            prefix = "pretrain_model/resnet%s_v1b" % BackboneParam.depth
            epoch = 0
            fixed_param = ["conv0"]

    class OptimizeParam:
        class optimizer:
            type = "sgd"
            lr = 0.01 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image
            momentum = 0.9
            wd = 0.0001
            clip_gradient = None

        class schedule:
            begin_epoch = 0
            end_epoch = 25
            lr_iter = [
                15272 * 15 * 16 //
                (len(KvstoreParam.gpus) * KvstoreParam.batch_image), 15272 *
                20 * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image)
            ]

        class warmup:
            type = "gradual"
            lr = 0.001 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image
            iter = 15272 * 1 * 16 // (len(KvstoreParam.gpus) *
                                      KvstoreParam.batch_image)

    class TestParam:
        min_det_score = 0  # filter appended boxes
        max_det_per_image = 100

        process_roidb = lambda x: x
        process_output = lambda x, y: x

        class model:
            prefix = "experiments/{}/checkpoint".format(General.name)
            epoch = OptimizeParam.schedule.end_epoch

        class nms:
            type = "nms"
            thr = 0.5

        class coco:
            annotation = "data/coco/annotations/instances_val2017.json"

    # data processing
    class NormParam:
        mean = (123.688, 116.779, 103.939)  # RGB order
        std = (58.393, 57.12, 57.375)

    class ResizeParam:
        short = 1280
        long = 1280
        scale_min = 0.8
        scale_max = 1.2

    class PadParam:
        short = ResizeParam.short
        long = ResizeParam.long
        max_num_gt = 100

    class AnchorTarget2DParam:
        def __init__(self):
            self.generate = self._generate()

        class _generate:
            def __init__(self):
                self.short = (160, 80, 40, 20, 10)
                self.long = (160, 80, 40, 20, 10)
                self.stride = (8, 16, 32, 64, 128)

            scales = (4 * 2**0, 4 * 2**(1.0 / 3.0), 4 * 2**(2.0 / 3.0))
            aspects = (0.5, 1.0, 2.0)

        class assign:
            allowed_border = 9999
            pos_thr = 0.5
            neg_thr = 0.5
            min_pos_thr = 0.0

        class sample:
            image_anchor = None
            pos_fraction = None

    class RenameParam:
        mapping = dict(image="data")


    from core.detection_input import ReadRoiRecord, Resize2DImageBbox, \
        ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \
        RenameRecord
    from models.NASFPN.input import RandResizeCrop2DImageBbox, ResizeCrop2DImageBbox
    from models.retinanet.input import PyramidAnchorTarget2D, Norm2DImage, \
        AverageFgCount

    if is_train:
        transform = {
            "sample": [
                ReadRoiRecord(None),
                Norm2DImage(NormParam),
                RandResizeCrop2DImageBbox(ResizeParam),
                Flip2DImageBbox(),
                Pad2DImageBbox(PadParam),
                ConvertImageFromHwcToChw(),
                PyramidAnchorTarget2D(AnchorTarget2DParam()),
                RenameRecord(RenameParam.mapping)
            ],
            "batch": [AverageFgCount("rpn_fg_count")]
        }
        data_name = ["data"]
        label_name = [
            "rpn_cls_label", "rpn_fg_count", "rpn_reg_target", "rpn_reg_weight"
        ]
    else:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            ResizeCrop2DImageBbox(ResizeParam),
            Pad2DImageBbox(PadParam),
            ConvertImageFromHwcToChw(),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data", "im_info", "im_id", "rec_id"]
        label_name = []

    from models.retinanet import metric

    rpn_acc_metric = metric.FGAccMetric("FGAcc", ["cls_loss_output"],
                                        ["rpn_cls_label"])

    metric_list = [rpn_acc_metric]

    return General, KvstoreParam, RpnParam, RoiParam, BboxParam, DatasetParam, \
           ModelParam, OptimizeParam, TestParam, \
           transform, data_name, label_name, metric_list
Exemple #4
0
def get_config(is_train):
    class General:
        log_frequency = 10
        name = __name__.rsplit("/")[-1].rsplit(".")[-1]
        batch_image = 2 if is_train else 1
        fp16 = False

    class KvstoreParam:
        kvstore = "nccl"
        batch_image = General.batch_image
        gpus = [0, 1, 2, 3, 4, 5, 6, 7]
        fp16 = General.fp16

    class NormalizeParam:
        normalizer = normalizer_factory(type="fixbn")

    class BackboneParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer

    class NeckParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer

    class RpnParam:
        num_class = 1 + 80
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        batch_image = General.batch_image

        class anchor_generate:
            scale = (4 * 2**0, 4 * 2**(1.0 / 3.0), 4 * 2**(2.0 / 3.0))
            ratio = (0.5, 1.0, 2.0)
            stride = (8, 16, 32, 64, 128)
            max_side = 1440

        class anchor_assign:
            allowed_border = 9999
            bbox_thr = 0.6
            pre_anchor_top_n = 50

        class head:
            conv_channel = 256
            mean = (.0, .0, .0, .0)
            std = (0.1, 0.1, 0.2, 0.2)

        class proposal:
            pre_nms_top_n = 1000
            post_nms_top_n = None
            nms_thr = None
            min_bbox_side = None

        class subsample_proposal:
            proposal_wo_gt = None
            image_roi = None
            fg_fraction = None
            fg_thr = None
            bg_thr_hi = None
            bg_thr_lo = None

        class bbox_target:
            num_reg_class = None
            class_agnostic = None
            weight = None
            mean = None
            std = None

        class focal_loss:
            alpha = 0.5
            gamma = 2.0

    class BboxParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        num_class = None
        image_roi = None
        batch_image = None

        class regress_target:
            class_agnostic = None
            mean = None
            std = None

    class RoiParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        out_size = None
        stride = None

    class DatasetParam:
        if is_train:
            image_set = ("coco_train2017", )
        else:
            image_set = ("coco_val2017", )

    backbone = Backbone(BackboneParam)
    neck = Neck(NeckParam)
    rpn_head = RpnHead(RpnParam)
    detector = Detector()
    if is_train:
        train_sym = detector.get_train_symbol(backbone, neck, rpn_head)
        test_sym = None
    else:
        train_sym = None
        test_sym = detector.get_test_symbol(backbone, neck, rpn_head)

    class ModelParam:
        train_symbol = train_sym
        test_symbol = test_sym

        from_scratch = False
        random = True
        memonger = False
        memonger_until = "stage3_unit21_plus"

        class pretrain:
            prefix = "pretrain_model/resnet-v1-101"
            epoch = 0
            fixed_param = ["conv0", "stage1", "gamma", "beta"]

        def process_weight(sym, arg, aux):
            for stride in RpnParam.anchor_generate.stride:
                add_anchor_to_arg(sym, arg, aux,
                                  RpnParam.anchor_generate.max_side, stride,
                                  RpnParam.anchor_generate.scale,
                                  RpnParam.anchor_generate.ratio)

    class OptimizeParam:
        class optimizer:
            type = "sgd"
            lr = 0.005 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image
            momentum = 0.9
            wd = 0.0001
            clip_gradient = 35

        class schedule:
            begin_epoch = 0
            end_epoch = 6
            lr_iter = [
                60000 * 16 //
                (len(KvstoreParam.gpus) * KvstoreParam.batch_image), 80000 *
                16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image)
            ]

        class warmup:
            type = "gradual"
            lr = 0.005 / 8 * len(
                KvstoreParam.gpus) * KvstoreParam.batch_image / 3
            iter = 1000

    class TestParam:
        min_det_score = 0.05  # filter appended boxes
        max_det_per_image = 100

        def process_roidb(x):
            return x  # noqa: E704

        def process_output(x, y):
            return x  # noqa: E704

        class model:
            prefix = "experiments/{}/checkpoint".format(General.name)
            epoch = OptimizeParam.schedule.end_epoch

        class nms:
            type = "nms"
            thr = 0.5

        class coco:
            annotation = "data/coco/annotations/instances_minival2014.json"

    # data processing
    class NormParam:
        mean = (122.7717, 115.9465, 102.9801)  # RGB order
        std = (1.0, 1.0, 1.0)

    class ResizeParam:
        short = 800
        long = 1333

    class PadParam:
        short = 800
        long = 1333
        max_num_gt = 100

    class RenameParam:
        mapping = dict(image="data")

    from core.detection_input import ReadRoiRecord, Resize2DImageBbox, \
        ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \
        RenameRecord
    from models.retinanet.input import Norm2DImage

    if is_train:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            Resize2DImageBbox(ResizeParam),
            Flip2DImageBbox(),
            Pad2DImageBbox(PadParam),
            ConvertImageFromHwcToChw(),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data"]
        label_name = ["gt_bbox", "im_info"]
    else:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            Resize2DImageBbox(ResizeParam),
            ConvertImageFromHwcToChw(),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data", "im_info", "im_id", "rec_id"]
        label_name = []

    import core.detection_metric as metric
    pos_loss = metric.ScalarLoss("PosLoss", ["positive_loss_output"], [])
    neg_loss = metric.ScalarLoss("NegLoss", ["negative_loss_output"], [])
    metric_list = [pos_loss, neg_loss]

    return General, KvstoreParam, RpnParam, RoiParam, BboxParam, DatasetParam, \
        ModelParam, OptimizeParam, TestParam, \
        transform, data_name, label_name, metric_list