from eICU_preprocessing.split_train_test import create_folder from models.run_tpc import TPC from models.initialise_arguments import initialise_tpc_arguments if __name__ == '__main__': c = initialise_tpc_arguments() c['mode'] = 'test' c['exp_name'] = 'TempWeightShare' c['model_type'] = 'temp_only' c['share_weights'] = True c['temp_kernels'] = [32] * c['n_layers'] log_folder_path = create_folder('models/experiments/final', c.exp_name) temp_weight_share = TPC( config=c, n_epochs=c.n_epochs, name=c.exp_name, base_dir=log_folder_path, explogger_kwargs={'folder_format': '%Y-%m-%d_%H%M%S{run_number}'}) temp_weight_share.run()
from models.run_tpc import TPC import numpy as np from models.initialise_arguments import initialise_tpc_arguments from captum.attr import IntegratedGradients from torch import cat, ones time_point = 23 # this means 24 hours because of python's indexing batch_size = 2 if __name__ == '__main__': base_dir = 'models/experiments/final/TPC' exp_dir = 'models/experiments/final/TPC/2020-06-27_2048171' tpc = TPC(base_dir=base_dir, resume=exp_dir, resume_save_types=('model', 'simple', 'th_vars', 'results')) c = initialise_tpc_arguments() c['mode'] = 'test' c['exp_name'] = 'TPC' c['model_type'] = 'tpc' tpc.config = c tpc.setup() tpc._setup_internal() tpc.prepare() tpc.model.eval() ig = IntegratedGradients(tpc.model)
from eICU_preprocessing.split_train_test import create_folder from models.run_tpc import TPC from models.initialise_arguments import initialise_tpc_arguments from models.final_experiment_scripts.best_hyperparameters import best_tpc if __name__ == '__main__': c = initialise_tpc_arguments() c['exp_name'] = 'PointwiseOnly' c['dataset'] = 'eICU' c = best_tpc(c) c['model_type'] = 'pointwise_only' log_folder_path = create_folder('models/experiments/final/eICU/LoS', c.exp_name) pointwise_only = TPC( config=c, n_epochs=c.n_epochs, name=c.exp_name, base_dir=log_folder_path, explogger_kwargs={'folder_format': '%Y-%m-%d_%H%M%S{run_number}'}) pointwise_only.run()
importances = baseline_score - np.array(scores) return Bunch(importances_mean=np.mean(importances, axis=1), importances_std=np.std(importances, axis=1), importances=importances) if __name__ == '__main__': time_point = 23 # this means 24 hours because of python's indexing batch_size = 2 base_dir = 'models/experiments/final/TPC' exp_dir = 'models/experiments/final/TPC/2020-06-27_2048171' tpc = TPC(base_dir=base_dir, resume=exp_dir, resume_save_types=('model', 'simple', 'th_vars', 'results')) c = initialise_tpc_arguments() c['mode'] = 'test' c['exp_name'] = 'TPC' c['model_type'] = 'tpc' tpc.config = c tpc.setup() tpc._setup_internal() tpc.prepare() tpc.model.eval() test_batches = tpc.test_datareader.batch_gen(batch_size=batch_size) ig = IntegratedGradients(tpc.model)